Final Technical Report
November 2000

4\%
AN

AFRL-IF-RS-TR-2000-154
" Q
|
|
|

INFORMATION INTEGRATION FOR
BATTLEFIELD AWARENESS (BADDINFO)

USC Information Science Institute
Sponsored by

Defense Advanced Research Projects Agency
DARPA Order No. F078

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

20010220 039

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

DTIC GQUALITY INSPECTED 1

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2000-154 has been reviewed and is approved for publication.

APPROVED: V/Q@mmcﬂ A c&fﬁo

RAYMOND A. LIUZZI
Project Engineer

FOR THE DIRECTOR: M @(a

NORTHRUP FOWLER, Technical Advisor
Information Technology Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTD, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

INFORMATION INTEGRATION FOR BATTLEFIELD
AWARENESS (BADDINFO)

Yigal Arens

Contractor: USC Information Sciences Institute

Contract Number: F30602-97-2-0238

Effective Date of Contract: 30 June 1997

Contract Expiration Date: 16 January 1999

Short Title of Work: Information Integration for

Battlefield Awareness

(BADDINFO)

Period of Work Covered: Jun 97 - Jan 99

Principal Investigator: Yigal Arens
Phone: (310) 822-1511
AFRL Project Engineer: Raymond Liuzzi
Phone: (315) 330-3577

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION
UNLIMITED.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by Raymond A. Liuzzi, AFRL/IFTD, 525 Brooks Road, Rome, NY.

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 07040188

Public reporting hurden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1216 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project {0704-0188}, Washingten, DC 20503.

1. AGENCY USE ONLY /Zeave biank] 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
_ NOVEMBER 2000 Final Jun 97 - Jan 99
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
INFORMATION INTEGRATION FOR BATTLEFIELD AWARENESS C - F30602-97-2-0238
(BADDINFO) PE - 63750D
PR - IIST

6. AUTHOR(S) TA - 00

Yigal Arens WU - 15

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES] 8. PERFORMING ORGANIZATION
USC Information Sciences Institute REPORT NUMBER

4676 Admiralty Way

Marina Del Rey CA 90292-6695 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSIES] 70. SPONSORING/MONITORING
Air Force Research Laboratory/IFTD AGENCY REPORT NUMBER
525 Brooks Road

Rome NY 13441-4505 AFRL-IF-RS-TR-2000-154

11. SUPPLEMENTARY NOTES
Air Force Research Laboratory Project Engineer: Raymond A. Liuzzi/IFTD/(315) 330-3577

12a. DISTRIBUTION AVAILABILITY STATEMENT 12h. DISTRIBUTION CODE
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. ABSTRACT (Maximum 200 words/

The Information Integration for Battlefield Awareness (BADDInfo) project at USC/ISI had two related components. First,
was the development of CSIMS, a C+ + version of the SIMS system. Second, the BADDInfo project utilized CSIMS in the
development of the Warfighter's Information Packager (WIP), in collaboration with ISX Corporation and Lockheed Martin
Intelligent Systems Center.

This final report includes some background that will put the current work in context, which is followed with two parts: A
description of the goals of the CSIMS port, and a description of the WIP system. The CSIMS manual and a conference
publication describing WIP are attached to the report, as further documentation of the work.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Information Integration, Battlefield Awareness, SIMS, Database, Database Integration, 80
Artificial Intelligence 16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED _ UL

Standard Form 298 gRev. 2-89) [EG)
Preseribed by ANSI Std. 239.18
Designed using Perform Pro, WHSDIOR, Oct 94

Table of Contents
1 Introduction

2 Background
2.1 The SIMS Group at ISI
2.2 SIMS Within the BADD Program

3 SIMS Port to C++
3.1 CSIMS System Manual

4 The Warfighters Information Packager (WIP)
4.1 Description
4.2 Final Status
43 Operational Use
44 WIP Description

5 References

Appendix I: CSIMS Manual
Appendix II: Warfighters Information Packager

N —

W W

v AW

The Information Integration for Battlefield Awareness (BADDInfo) project at USC/ISI had two
related components. First was the development of CSIMS, a C++ version of the SIMS system
(which was developed in collaboration with the DARPA-funded SIMSPort project at ISI).
Second, the BADDInfo project utilized CSIMS in the development of the Warfighter’s
Information Packager (WIP), in collaboration with ISX Corp. and Lockheed Martin Intelligent
Systems Center.

Foliowing some background that will put the current work in context, this report will therefore
be divided into two parts: A description of the goals of the CSIMS port, and a description of
the WIP system. The CSIMS manual and a conference publication describing WIP are
attached to the report, as further documentation of the work.

2.1 The SIMS Group at ISl

For several years now, with DARPA support, USC/ISI has had a substantial research and
prototype development effort in information technology with a particular emphasis on
enabling the integration of multiple, distributed heterogeneous sources of data and
information. The ISI projects devoted to this pursuit are collectively known as the SIMS group
(Single Interface to Multiple Sources).

The SIMS group has developed a modeling system and methodology with which it is possible
to declaratively describe the contents, structure and processing capabilities of a variety of
types of information sources. We have also developed the SIMS query-processing

engine a central query mediator that handles requests for data possibly distributed among
multiple sources while insulating the user (or calling system) from the details of database
organization, query language, etc. The SIMS mediator accepts queries formulated against a
high-level view of the application domain about which data is stored in the multiple sources. It
uses the descriptions of the different sources to construct a plan for obtaining the information
requested. This query-plan contains steps that involve constructing subqueries, sending
such subqueries to appropriate sources, manipulating the results, performing joins, and so
forth.

Noteworthy features of the SIMS approach and system are:

e SIMS addresses the "global integration problem”
- Information sources are mapped into one domain model
+ Information sources are modeled independently of each other
+ The resulting system is highly extensible and maintainable
¢ SIMS supports flexible and extensible query languages
- SQL, SQL with path extensions, the Loom KR language
e SIMS dynamically builds query access plans

+ It uses the source descriptions to select relevant information sources and
reformulate queries that cannot be answered directly as given

+ It minimizes data movement over the network and maximizes parallelism

« It interleaves planning and execution for added flexibility

» It optimizes queries using semantic knowledge

« It exploits knowledge of both the domain and the information sources
¢ SIMS handles a variety of information sources

« Relational databases, object-relational databases

+ Web pages and sites

« Certain programs

Additional information about SIMS, including downloadable versions of papers describing all
aspects of the system, can be obtained at http://www.isi.edu/sims. In particular, see [Arens et

al 96] [Arens et al 94] [Arens et al 93] [Knoblock 95).

2.2 SIMS Within the BADD Program

Among the objectives of the BADD program was to ensure, to the extent possible, that all
information affecting battlefield decisions be available to the warfighter at all times. In order
to achieve this, the capability to assemble the requisite information from the streams of data
available from various sources would have to be supported. In addition, the warfighter must
have the capability to obtain data that is not resident locally. Limited communication
bandwidth, combined with the large size of certain types of data objects (e.g., images), plus
the inability to always predict accurately what information could be relevant to the warfighting
effort, mean that one cannot always depend on the requisite data being stored locally.

The need to create local proxy-servers for remote data, plus the need to obtain data on the
fly from both internal and external sources means, in practical terms, that a Warfighter s
Associate (WFA), or another application, must have the ability to identify sources of
necessary data, be familiar with the query languages used by various sources, and be
capable of querying the sources and integrating the results into an answer suitable for the
warfighter s needs. It is necessary that information needs be divided to those that can be
satisfied locally and those that require remote access and that the portions of the
information obtained from different sources, whether local or remote, be integrated in the
end. In addition, information needs that are "ongoing”, or repeated at regular intervals, must
be coordinated. All this must be done while considering the bandwidth of various network
connections, and maintaining the ability to recover if certain sources are found to be
inaccessible, or if access is restricted to a degree not anticipated ahead of time.

This is a difficult task. It is unreasonable to expect that an individual would know enough to
perform it, and it would be wasteful to build it into every WFA application.

SIMS technology was applied to the BADD domain to provide the capability to integrate
information from multiple distributed, heterogeneous battlefield-related information sources.
Specifically, (1) SIMS was used to integrate information from multiple data sources to support
complex queries specified by data profiles; and (2) the SIMS system, which was previously
currently in LISP, was ported to C++, in order to provide an easy integration of SIMS with
other BADD components and to help make the SIMS system compliant with the Defense
Information Infrastructure Common Operating Environment (DI/COE).

In the next sections, we will discuss the work we carried out to fulfill our technical goals.

A port of SIMS to C++ was the foundation of our overall effort of supporting the BADD
program. The process was carried out in a series of phases, each of which provided more
functionality. The process of porting SIMS to C++ was planned to satisfy the following design
goals:

¢ The resulting C++ system should be efficient, robust and extensible. A phased
approach had to be followed to allow for incremental extension of the system s
functionality. Each phase had to result in a complete working system:.

» Interoperability with the existing Lisp system had to be maintained so that the
modules of the original Lisp system could be used in place of the C++ system
modules, and vice versa. Maintaining interoperability facilitated smooth transferring of
new technologies to the C++ system, and testing the port at various phases to
ensure its success.

* The system was designed to facilitate an eventual port to Java. We chose an object-
oriented design that would make it relatively easy to transition to Java. We have no
current plans for a Java port, but we foresee this as a possible path for future
development, due to the multi-platform nature of Java and the strong possibility of its
eventual inclusion in DH/COE.

The phased approach was implemented as follows:

Multi-source | Query language Plan Failure recovery | Completion
access optimization date
capabilities
Phase 1} yes sources must be no limited, substitute March,1998
explicitly specified replicated sources
Phase 2 | yes sources must be yes full SIMS recovery | August,
explicitly specified capabilities 1998
Phase 3 | yes full SIMS language | yes full SIMS recovery | December,
capabilities 1998

3.1 CSIMS System Manual

A complete CSIMS system manual is attached to this report.

4 THE WARFIGHTER S INFORMATION PACKAGER (WIP)'

The Warfighters Information Packager (WIP) is a suite of distributed components that create
an end-to-end system which allows users to easily obtain information from diverse
heterogeneous data sources and display the results in a user-defined, predictable manner.

' WIP was designed and built together with ISX Corp. and Lockheed Martin Intelligent
Systems Center. The BADDInfo project contributed the data access and integration.

WIP tackles the problem of how to satisfy the information needs of individual end-users, and
provide access to their specific information given an information push paradigm.

Together, the WIP components create a distributed system that serves as a valuable tool for
information analysis in a networked community by:

1. Allowing the user to define high-level information products, "Information Packages",
which are parameterized by user interests, needs, and specific tasks and roles;

2. Providing a web-based package viewer that dynamically constructs packages for the
user on demand and performs value-added information linking based on the
information returned for others within the networked community;

3. Allowing users to make high-value complex information requests that can span
multiple data sources, without any a priori knowledge of the schema of the sources;

4. Monitoring data sources and anticipating useful modifications to a user's Information
Package.

4.1 Description

As information research advances, the ability to gather information from diverse sources
grows by leaps and bounds. In the case of data however, more isn’t necessarily better.
Organizing the right information can make the difference between a confusing mass of data
and a well organized presentation. This is especially true in the realm of Battlefield
Awareness. The Warfighter’s Information Packager (WIP) effort is designed to facilitate the
accumulation of user requested data and optimize the creation of information packages with
regard to display, readability and usability. In this project an intelligent information
dissemination system based on user-defined packages, domain models, information
visualization techniques, and hyper-linked data technology is being developed.

The WIP system combines the needs of an individual user to gather and analyze information
with others within the networked community. One aspect of WIP is the gathering of
information by the creation of a high-value complex domain ontology that allows the user
access to underlying data-sources without express knowledge of the individual sources
themselves. WIP applies technology to anticipate the information needs of a particular user
by observing the world-state and detecting changes, and by analyzing the needs of similar
users within the system. The query server within WIP includes a query execution planner
which decomposes a high-level domain query and dynamically chooses data sources based
on their current availability and appropriateness. Once information is gathered WIP again
analyzes the acquired information, for a user and for the other users in the system, and
recognizes semantic connections between all the users’ information in a dynamic fashion.
WIP then formats and renders the information product for the user.

4.2 Final Status

Prototype systems, with limited functionality, exist for the Package Editor and Product Viewer.
These components provide the user interfaces for the creation of the user information
packages and for the viewing of the package products after they have been created. The
Query Server (SIMS), responsible for satisfying the information requests, is currently
supporting several projects. The Anticipator, which is responsible for anticipating users’
information needs, has continued to undergo development by Lockheed Martin.

4.3 Operational Use

The WIP approach provides a straightforward mechanism for multiple levels of command to
define their information needs and a convenient way for users to view the results of their
information requests. The WIP system addresses information accumulation and analysis
issues in the Battlefield Awareness domain. Specifically, the WIP system is being used to
create Target Folders that will update automatically based upon available data. Another
application currently under development for WIP is providing situation assessments for field
operations.

4.4 WIP Description

A complete description of the WIP system in the form of a paper published in the proceedings
of the International Conference Applications of Attificial Intelligence is attached to this report.

[Arens et al. 96] Yigal Arens, Craig A. Knoblock, and Wei-Min Shen. Query Reformulation for
Dynamic Information Integration. Journal of Intelligent Information Systems, Vol. 6,
1996, pp. 99-130.

[Arens et al. 94] Yigal Arens, Chin Y. Chee, Chun-Nan Hsu, Hoh In and Craig A. Knoblock.
Query Processing in an Information Mediator. In Proceedings of the ARPA/RL
Knowledge-Based Planning and Scheduling Initiative Workshop. Tucson, AZ,
February 21—24, 1994.

[Arens et al. 93] Yigal Arens Chin Y. Chee, Chun-Nan Hsu and Craig A. Knoblock.
Retrieving and Integrating Data from Multiple Information Seurces. International
Journal of Intelligent and Cooperative Information Systems. Vol. 2, No. 2, 1993. pp.
127—158.

[Knoblock 95] Craig A. Knoblock. Planning, Executing, Sensing, and Replanning for
Information Gathering. Proceedings of the Fourteenth International Joint Conference
on Artificial Intelligence, Montreal, Canada, 1995.

The CSIMS Manual, v. 1.0

May 27, 1999

The CSIMS Manual

Version 1.0*

José-Luis Ambite
Yigal Arens
Naveen Ashish
Craig A. Knoblock
Steven Minton
Jay Modi
Maria Muslea
Andrew Philpot
H. Jean Oh
Wei-Min Shen
Sheila Tejada
Weixiong Zhang
Information Sciences Institute and Department of Computer Science
University of Southern California
4676 Admiralty Way,
Marina del Rey, CA 90292, U.S.A.

May 27, 1999

Abstract

SIMS provides intelligent access to heterogenecus, distributed information sources, while insulating
human users and application programs from the need to be aware of the location of the sources, their
query languages, organization, size, etc.

This manual explains how to bring up a SIMS information server in a new application domain.
After providing a short overview of relevant features of the SIMS system, it describes the modeling and
programming work that has to be performed to support the extension of SIMS to a given collection of
information sources in the domain. To aid a user inexperienced with the technological infrastructure
underlying SIMS, the manual contains examples structured as a tutorial that can be followed to actually
produce a working SIMS system.

*The research reported here was supported in part by Rome Laboratory of the Air Force Systems Command and the Defense
Advanced Research Projects Agency under Contracts Number F30602-94-C-0210, F30602-97-2-0352, and F30602-97-2-0238 and
in part by a grant from Computing Devices International. The views and conclusions contained in this paper are those of the
authors and should not be interpreted as representing the official opinion or policy of RL, DARPA, the U.S. Government, or
any person or agency connected with them.

Contents

1

10

Introduction
1.1 Architecture and Background
1.2 Information Sources Supported

The CSIMS Query Language
2.1 LOOM Syntax
2.2 SQL Syntax

The Domain Model

3.1 The Model: Classes and Attributes

3.2 Specifying the Model: Class Definitions
3.3 Specifying the Model: Attribute Definitions

Defining Information Sources
4.1 Describing the Contents of an Information Source

Accessing an Information Source
5.1 kgml-odbc-source

5.2 kqgml-wrapper-source

5.3 http-wrapper-source

5.4 functional-source

The CSIMS Axiom Language
6.1 Axiom Syntax

The SCIMS Plan Language

Information-Source Wrappers
8.1 Information Source Wrappers

Communication Issues
9.1 Remote Communication Using KQML
9.2 Remote Communication Using CORBA

Compiling and Running CSIMS

10.1 Compiling CSIMS

10.2 Configuring CSIMS

10.3 Using KQML

10.4 Using CORBA

10.5 Trouble Shooting

10.6 Running CSIMS Standalone

10.7 Running CSIMS as a KQML Agent
10.8 Running CSIMS as a CORBA Server

10
10
12

13
13
15

18
18
18
19

24
24

25
25
26
26
27

28
28

31

35
35

36
36
37

39
39
39
39
40
40
41
41
41

10.9 Running CSIMS from a CGI Script
10.10 Running CSIMS from the GUI

11 System Requirements
12 Coded Example

13 Additional Reading
13.1 SIMS
13.2 Loom
13.3 KQML
13.4 CORBA related

Acknowledgements
References

42
42

43

44

49
49
50
50
50

51
51

1 Introduction

The overall goal of the SIMS project is to provide integrated access to information distributed over multiple,
heterogeneous sources: databases, knowledge bases, flat files, Web pages, programs, etc. In providing such
access, SIMS tries to insulate human users and application programs from the need to be aware of the
location of sources and distribution of queried data over them, individual source query languages, their
organization, data model, size, and so forth. The processing of user requests should be robust, capable of
recovery from execution-time failures and able to handle and/or report inconsistency and incompleteness of
data sources. At the same time SIMS has the goal of making the process of incorporating new sources as
simple and automatic as possible.

The SIMS approach to this integration problem has been based largely on research in Artificial Intelli-
gence; primarily in the areas of knowledge representation, planning, and machine learning. A model of the
application domain is created, using a knowledge representation system to establish a fixed vocabulary for
describing objects in the domain, their attributes and relationships among them. Using this vocabulary, a
description is created for each information source. Each description indicates the data-model used by the
source, the query language, network location, size estimates, etc., and describes the contents of its fields in
relation to the domain model. SIMS’ descriptions of different information sources are independent of each
other, greatly easing the process of extending the system. Some of the modeling is aided by source analysis
software developed as part of the SIMS effort.

Queries to SIMS are written in a high-level language (Loom or a subset of SQL) using the terminology
of the domain model — independent of the specifics of the information sources. Queries need not contain
information indicating which sources are relevant to their execution or where they are located. Queries do
not need to state how information present in different sources should be joined or otherwise combined or
manipulated.

SIMS uses a planner to determine how to identify and combine the data necessary to process a query.
In a pre-processing stage, all data sources possibly relevant to the query are identified. The planner then
selects a set of sources that contain the queried information and generates an initial plan for the query.
This plan is repeatedly refined and optimized until it meets given performance criteria. The plan itself
includes, naturally, sub-queries to appropriate information sources, specification of locations for processing
intermediate data, and parallel branches when appropriate. The SIMS system then executes the plan. The
plan’s execution 1s monitored and replanning is initiated if its performance meets with difficulties such as
unexpectedly unavailable sources. It is also possible for the plan to include explicit replanning steps, after
reaching a state where more is known about the circumstances of plan execution.

Changes to information sources are handled by changing source descriptions only. The changes will
automatically be considered by the SIMS planner in producing future plans that utilize information from
the modified sources. This greatly facilitates extensibility.

The rest of this section presents an overview of SIMS and its architecture. In Section 2 we show the
format of the queries that a user would input to SIMS and the output that should be expected. Then we
consider in more detail the specification of the domain model, in Section 3, and how information sources are
described to the system, in Section 4. Section 8 gives a brief introduction on how to construct a wrapper for
a new information source and how to communicate with the wrapper. Section 10 explains how to run SIMS
both through its graphical user interface and its functional interface. Section ??7 describes how to test and
debug a new SIMS application. Section 11 presents the installation and system requirements. Finally, in
Section 12 we show the code that would implement the example that is discussed throughout the manual.
Section 13 contains a reading list of relevant papers.

1.1 Architecture and Background

A visual representation of the components of CSIMS is provided in Figure 1.

CSIMS addresses the problems that arise when one tries to provide a user familiar only with the general
domain with access to a system composed of numerous separate data- and knowledge-bases.

Specifically, CSIMS does the following:

e Modeling: It provides a consistent way of describing information sources to the system, so that data

10

User Information Initial Query-Plan]
Quer Source Query-Plan Rewriting/ Execution Output
y Selection Formation Optimization

. Database,
Domain Model Knowledge Knowledge Base,

Inforatlon Source Discovery Program, HTML

Information Sources

Semi-
Automated
Modeling

Figure 1: CSIMS Overview Diagram.

in them is accessible to it (currently not implemented in CSIMS).
e Information Source Selection: Given a query, it

— Determines which classes of information will be relevant to answering the query.

~ Quickly, using some information generated during an earlier preprocessing stage, generates a list
of all combinations of sources that contain all information required for a query.

¢ Initial Query-Plan Formation: It creates an initial plan, a sequence of subqueries and other forms
of data-manipulation that when executed will yield the desired information. This initial plan does not
necessarily satisfy any optimization requirements.

e Query-Plan Rewriting/Optimization: By successively applying rewriting rules that preserve the
correctness of the plan, it gradually improves the plans efficiency. This process continues until no
further rewriting is possibly, or until the allotted time runs out.

o Execution: It executes the reformulated query plan; establishing network connections with the appro-
priate information sources, transmitting queries to them and obtaining the results for further process-
ing. During the execution process CSIMS may detect that certain information sources are not available,
or respond erroneously. In such cases, the relevant portion of the query plan will be replanned.

Each information source is accessed through a wrapper, a module that can translate from a description

of a set of data in CSIMS’ internal representation language into a query for that data that is then submitted
to the source. The wrapper also handles communication with the information source and takes the data
returned by it and sends it on to CSIMS in the form CSIMS expects.

1.2 Information Sources Supported

In order for CSIMS to support an information source it must have a description of the source, and there must
exist a wrapper for that type of source. While each information source needs to be described individually,
only one wrapper is required for any type of information source.

In addition, through an “ODBC wrapper” CSIMS uses ODBC to interact with all ODBC-enabled
databases. This includes Oracle, Sybase, Informix, Ingres, and many others. To add a new database of
any of these types requires, therefore, only to create an information source description for it. In order to
add an information source of a new type one would have to obtain, or write, 2 new wrapper for it as well.
We also have an ongoing associated effort (Ariadne) that includes work on semi-automatic generation of
wrappers for HTML pages.

12

2 The CSIMS Query Language

Currently, CSIMS only supports commands for retrieving data. Specifically, CSIMS takes a retrieval query
as input and returns the data satisfying the constraints specified in the query. The output format of CSIMS
is a list of tuples of constant(s). A retrieval query can be expressed in a LOOM syntax or a SQL syntax.
The followingtwo sections discuss these two languages in detail.

2.1 LOOM Syntax

Loom serves as the knowledge representation system that CSIMS uses to describe the domain model and the
contents of the information sources. In addition, Loom is used to define a knowledge base that itself serves
as an information source to CSIMS. Loom provides both a language and an environment for constructing
intelligent applications. It combines features of both frame-based and semantic network languages, and
provides some reasoning facilities.

The BNF syntax for the CSIMS query language is shown in Figure 2.

<query> = (sims-retrieve <variable> | ({<variable>}*) <query-expr>)
<query-expr> ::= ({:and | :or} {<query-expr>}*)

<clause> ::= <concept-exp> | <relation-exp> | <assignment-exp> | <comparison—exp>
<concept-exp> = (<concept-name> <variable>)

<relation-exp> ::= (<relation-name> {<bound-variable>} {<term>})

<assignment-exp> ::= (:= <unbound-variable> {<arith-exp> | <set-exp>})

<set-exp> :u= ({<comstant>}*) ,

<comparison-exp> := <member-comparison> | <arithmetic-comparison>
<member-comparison> ::= (member <bound-variable> <set—exp>))
<arithmetic-comparison> ::= (<comparison-op> {<arith-exp>} {<arith-exp>})
<arith-exp> ::= <number> | <bound-variable> | (<arith-op> <arith-exp> <arith-exp>)
<arith-op> u= + |- | * |/

<comparison-op> u= = | > | < | >= | <= | = | match

<concept-name> ::== <symbol>

<relation-name> ::= <symbol>

<term> ::= <constant> | <variable>

<variable> ::= <bound-variable> | <unbound-variable>

<bound-variable> ::= ?<symbol>

<unbound-variable> ::= ?<symbol>

<comstant> ::= <number> | <string>

Figure 2: BNF for the CSIMS Query Language in LOOM Syntax

The following are the basic forms of a CSIMS query:
(sims-retrieve ?v <guery-expr>)
(sims-retrieve (?v; ... ?v,) <query-expr>)

The variables listed after the sims-retrieve command, ?v and ?v; ...%v,, are considered output vari-
ables. This means that the values of these variables are returned as the output of the query. All variables
must be named with the prefix ‘7. The query expression is composed of clauses and constructors. Clauses
determine the values of the variables by binding the variables to specific types of values. In other words,
clauses constrain the values of the variables. There are four types of clauses supported by the CSIMS lan-
guage which will be described in the next section. Clauses can be grouped by constructors into queries.
Currently, the constructors provided are :and and :or.

A CSIMS query returns as output a list of instantiations of the output variables which satisfy the bindings
of the clauses in the query body. The following shows an example of output from a CSIMS query.

(sims-retrieve (?name) (:and (American-Large-Seaport 7seaport)
(port-name ?seaport ?name)))

o

==> (("Long Beach") ("New York") ("Norfolk") ...)
In this query the output variable 7name is bound to the values of the role port-name of American-Large-Seaport.

2.1.1 Clauses

Clauses are expressions that constrain the values which can be bound to a variable. A clause is satisfied
when there exists values that satisfy the constraints on the variables in that clause. The following are the
four types of clauses:

e Concept expressions:
(<concept-name> <variable>)

where <concept-name> is the name of a concept, the variable is bound to an instance of the concept
<concept-name>. An example of a concept expression is:
(Seaport ?seaport)

This constrains the variable ?seaport to only the instances of the concept Seaport. Variables in
concept expressions cannot be returned by the system.

e Relation expressions:
(<relation-name> <bound-variable> <term>)

where <relation-name> is the name of a relation, <bound-variable> is a variable from a concept
expression while <term> can be either a variable or a constant (a number or a string). The first clause
states that there is a binary relation <relation-name> between <bound-variable> and <term>. The
following are examples of this type of relation expression:

(port-name 7seaport 7name)

(seaport—country-code ?portCountryCode ’A123)

The first expression is only satisfied if the value for 7name is the port-name of ?seaport. The second
expression is only satisfied if *A123 is the seaport-country-code of ?portCountryCode.

e Assignment expressions:
(:= <unbound-variable> <arith-expr>)

This clause assigns to the unbound variable the computed result of <arith-expr>.

For the following example, suppose we have a concept Seaport and its relations to its name (port-name)
and to its number of cranes code (cranes). The following query will return a list of the names of a
pair of seaports that have more than five cranes in total.
(sims-retrieve (7portnamel ?portname2)
(:and (Seaport ?seaporti)
(Seaport 7seaport2)
(port-name ?seaportl ?portnamel)
(port-name ?seaport2 ?portname2)
(cranes ?seaportl ?cranesi)
(cranes 7seaport2 ?cranes2)
(:= 7totalcranes (+ 7cranesl ?7cranes2))
(> 7totalcranes 5)))
==> (("Long Beach" "Norfolk")
("New York" "San Diego")

o Comparison expressions are used to express a constraint on variables. The following are forms of
member comparisons:

14

(member <bound-variable> <set-exp>)

where a <set-exp> is defined as a set of constants. This clause is satisfied if the variable is bound to
one of the constants (i.e., strings or numbers) in the <set-exp>.

The following are examples of member comparisons:
(member 7name ("Long Beach" "San Diego™ "Newport Beach'))

This expression is only satisfied if the value for ?name matches one of the three strings in the set.

Another type of comparison expression uses the arithmetic comparison operators: =, >, <, >=, <=,
b=

(<comparison-op> <arith-expr> <arith-expr>)

The following are examples of the arithmetic comparison:
(> ?cxr 5)
(= ?depth 120)

The first examf)le checks that the the number of cranes (7cr) of a seaport is greater than five. The
second example verifies the channel depth (?depth) of a seaport is equal to 120.

Match is yet another comparison expression. It takes two arguments, a variable and a match string.
It matches the value of the variable against the string. The string can have two meta-characters. The
first meta-character is %, which matches zero or more characters. The second is _, which matches any
one character. The following is an example of using match:
(sims-retrieve (7name)
(:and (geographic-location 7g)
(geographic-name ?g ?name)
(match ?name " _X%Y%")))

This query will retrieve all geographic locations whose names have X as the second character and at
least one Y after the X.

2.1.2 Query Expression Constructors

This section describes the two expression constructors supported by CSIMS.

(:and ezpr; ...expr,) — CONJUNCTION
This returns the values for which each of the expressions expr; is satisfied.

Example: (:and (Seaport ?x) (port-name ?x ?y))
This expression is satisfied if 7x is a Seaport and ?y is the name of that seaport.

(:or ezpr; ...expr,) — DISJUNCTION

This returns the values for which at least one of the expressions expr; is satisfied.
} Example: (:or (Small-Seaport 7x) (American-Large-Seaport ?x))
This expression is satisfied if 7x is either a Small-Seaport or an American-Large-Seaport.

2.2 SQL Syntax

CSIMS also accommodates queries written in a subset of SQL syntax. A query in SQL syntax is first
translated into the native Loom query language and then processed by CSIMS internally. This SQL-syntax
front end is different from a typical SQL query engine, such as a relational database, in two important ways.

e Syntax: CSIMS’ SQL front end accepts only a subset of standard SQL, a subset which easily corre-
sponds to the internal Loom query language variant used in CSIMS.

o Semantics: CSIMS’ SQL front end uses SQL to refer to CSIMS domain concepts and relations, which
are high level source-independent descriptions (”views”) of the application domain. The terms do not
necessarily refer to tables in any particular database.

The BNF syntax for the CSIMS query language is shown in Figure 3.

<query> ::= SELECT <ret-param>{,<ret-param>}+
FROM <concept-spec>{, <concept-spec>}+
WHERE condition {, condition}+

<ret—param> ::= <colname> | <expr>
<colname> ::= <CONCEPT-NAME>. <ATTRIBUTE-NAME> | <ALIAS>.<ATTRIBUTE-NAME>
<concept-spec> ::= <CONCEPT-NAME> | <CONCEPT-NAME> <ALIAS>
<expr> u= (<expr> {,expr}+) |
<constant> |

-<expr> | +<expr> |
<expr> <op> <expr>
<constant> = <NUMBER> | <STRING> | NULL
<op> u=* |+ |~ |/
<comparison ops> u= = | = | < |> | < | >= | =< | match
<condition> ::= <expr> <comparison-ops> <expr> |
<expr> IN <expr> |
<expr> LIKE <expr> |
<condition> AND | OR <condition> |
NOT <condition> |
(<condition>)

Figure 3: BNF for the CSIMS Query Language, SQL Syntax

In both SELECT lists and constraint conditions, attributes must always be specified using the fully
qualified (Concept.attribute) syntax, even if only a single concept is referenced. This is because parsing
of the SQL might take place in an environment where the schema of the underlying view might not be
available, so there might be no context providing a way to assign attributes to concepts. The following is a
correct example:

SELECT ConceptZ.a
FROM ConceptZ
WHERE ConceptZ.b > 10
while the next two examples are incorrect because attributes are not specified with the fully qualified syntax.
SELECT a
FROM ConceptZ

SELECT ConceptV¥W.b
FROM ConceptW
WHERE b like "%LARGE%L"

As alluded to above, aliases can be used if desired:
SELECT R.a, R.b, S.b, S.c
FROM ConceptX R, ConceptY S
WHERE R.d = S.e

However, Concept.* (meaning all attributes) is not supported. In addition, CSIMS does not currently
distinguish between sets and bags of tuples. Practically, this means that in SELECT statements everything
1s distinct.
The following is an example of CSIMS query in SQL format
SELECT Seaport.port-name
FROM Seaport
WHERE Seaport.cranes > 7

16

==> ("Long Beach" "Norfolk" ...)
This query asks for the names of large seaports. Equivalently, the following query returns the same infor-

mation.
SELECT Large-Seaport.port-name
FROM Large-Seaport
There are a few exceptions in CSIMS’ SQL support. Constraints and expressions are currently only
expressed in terms of simple arithmetic and boolean operators. In addition, CSIMS’ treatment of aggregate

operations is ;urrently very limited. Specifically, the following are not supported:
o Nested SELECTs.
e START WITH, GROUP BY, HAVING, CONNECT BY conditions.
 ORDER BY, FOR UPDATE.
¢ set operations UNION, UNION ALL, INTERSECT, MINUS.

¢ use of ROWNUM or other pseudocolumns.

Finally, as a (Lisp) syntactic convenience, the system is configured by default to intepret any occurrence of
the underscore character (_) in concept names and attribute names to the dash (-) character. For example, the
concept-name RUNWAY_LENGTH would be rendered as RUNWAY-LENGTH. This detail is unimportant
except for users attempting to match up with a preexisting CSIMS domain model using terms denoted with

the (-) character.

17

3 The Domain Model

A domain model provides the general terminology for a particular application domain. This model is used
to unify the various information sources that are available and provide the terminology for accessing those
information sources. Throughout this manual we use a simple application domain that involves information
about various types of seaports. The example is simple so that we can provide a complete, but short,
description of the model. Figure 4 shows our example domain model.

Note: Currently CSIMS does not implement the domain model.

3.1 The Model: Classes and Attributes

The domain mode! is described in the Loom language, which is a member of the KL-ONE family of KR
systems. In Loom, objects in the world are grouped into “classes”. Our example domain has several classes:
Seaport, Large Seaport, Small Seaport, American Large Seaport, European Large Seaport and Country.
The classes are indicated with circles in Figure 4. Subclass relationships are shown by dark solid arrows.
For example, the class Large Seaport is a subclass of Seaport. This means that every instance of Large
Seaport is also an instance of Seaport. A class can have any number of subclasses, but (currently) CSIMS
allows a class to have at most one superclass.

The figure also shows that Large Seaport and Small Seaport form a covering. This means that the
class Seaport is the union of Large Seaport and Small Seaport. Thus, every seaport is either a large
seaport or a small seaport.

Classes generally have atiributes associated with them. For instance, the class Seaports has six attributes
associated with it, a geographic code (geoloc-code), a port name (port-name), the number of cranes in
the port (cranes), the channel depth (depth), the seaport’s country code (seaport-country-code), and a
country (country). This means that every seaport has a corresponding geographic code, port name, number
of cranes, depth, and country code. Attributes are inkerited down to subclasses. Thus, every large seaport
will also have these six attributes, since Large Seaport is a subclass of Seaport. European large seaports
have seven attributes, since they inherit the six attributes from Large Seaport, plus there is an additional .
attribute, the tariff code, associated with that class.

Classes can be defined as either primitive classes or they can be defined in terms of other classes. A
primitive class has no explicit definition specifying the constraints that differentiate it from its superclass. For
example, one might could create the class Large Seaport without specifying what constraints differentiate
it from its superclass, Seaport. In terms of modeling a set of sources, this is useful in the case where you
have two sources, where one is clearly a subclass of the other, but there is no simple way to characterize the
specific subclass of information it contains.

Alternatively, it is possible to define the relationship between a subclass and superclass by explicitly
describing the constraints on the subclass. For example, a large seaport might be defined as a seaport with
more than seven cranes. This is what we have done in our example domain, as shown in Figure 4, where
the class Large Seaport is defined as Seaport A (> cranes 7).

3.2 Specifying the Model: Class Definitions

Figure 5 shows the six class definitions that must be given to CSIMS to specify the classes in our example
domain. (See Figures 7 and 8 for a BNF description of the modeling language.) The class definition
indicates whether or not the class is primitive. When a class is defined in terms of other classes, such as
Large Seaport, the definition is specified using an “is” clause. The “is” and the “is-primitive” clauses are
also used to indicate any attributes associated with the class.

Class definitions also have an “annotations” field. CSIMS requires that every class has at least one defined
key, which consists of one or more attributes that uniquely identify each instance in a class. Since there
may be more than one way to uniquely identify an instance, a class can have multiple keys. For example,
any seaport can be uniquely identified either using the geoloc-code or the port-name. Because more than
one attribute may be necessary to uniquely identify an instance, a key can include multiple attributes. For
instance, in another domain, it might be that street number, street name and city name are all necessary to
uniquely identify a particular house.

18

geoloc—code
port-name

country—-code

country—name
cranes ~a currency
seaport-country-cdde language

covering

= Seaport A

Large (> cranes 7)

Seaport

= Seaport A
(<= cranes 7)

covering Legend

(class inheritance)

domain
attributes|

Domain
Class

American
Large
Seaport

European
Large
Seaport

tariff-code

Figure 4: Domain Model

The annotations field of a class definition is also used to indicate that a class is a covering (i.e., the
union) of some of its subclasses. For example, the class Seaport is the union of Large Seaport and Small
Seaport.

3.3 Specifying the Model: Attribute Definitions

There are two types of attributes in CSIMS. Most of the attributes in our example domain are simple
atiributes, in that they are basic classes: strings or numbers. But attributes can also represent relations
between two defined classes. For instance, Seaport has an attribute called Country-of, so that every seaport
is associated with a country. Thus, Country-of is a relation between Seaport and Country.

Figure 6 shows the relation definitions that define the attributes used in the domain model. Notice that
each attribute has a domain and range. Defined relations (attributes that relate two classes) have a definition.
For instance the Country-of relation has a definition which specifies that the relation holds between a seaport
and a country if the seaport’s seaport-country-code matches the country’s country-code.

There cannot be two different attributes with the same name. In our example, Seaport has the attribute
seaport-country-code, and Country has an attribute country-code. Even though these are both ‘country
codes’, the names of the attributes must be different.?

The domain model is used as the basis for the CSIMS query language that enables the user to construct
queries. The classes included in the domain model are not necessarily meant to correspond directly to objects
described in any particular information source. The domain model is intended to be a description of the
application domain from the point of view of someone who needs to perform real-world tasks in that domain

1Had we wanted a Seaport to have an attribute called country-code, we would have done so only by making the model
more complex. For instance, we could have created a class Geographic entity with an attribute country~code, which could
have been a superclass of both Country and Seaport, in which case the attribute country-code would have been inherited down
to both of these classes.

(def-sims-concept seaport
:is-primitive (:and sims-domain-concept
(:the country-of country)
:the geoloc-code string)
:the seaport-country-code string)
:the port-name string)
:the cranes number)
(:the depth number))
:annotations ((key (geoloc-code))
(key (port-name))
(covering (large-seaport small-seaport})))

(def-sims-concept large-seaport
:is (:and seaport
(> cranes 7))
:annotations ((key (geoloc-code))
(key (port-name))
(covering (american-large-seaport
european-large-seaport))))

(def-sims-concept small-seaport
:is (:and seaport
(<= cranes 7))
:annotations ((key (geoloc-code))
(key (port-name))))

(def-sims-concept american-large-seaport
:is-primitive large-seaport
:annotations ((key (geoloc-code))

(key (port-name))))

(def-sims-concept european-large-seaport
:is-primitive (:and large-seaport
(:the tariff-code string))
:annotations ((key (geoloc-code))
(key (port-name))))

(def-sims-concept country
:is-primitive (:and sims-domain-concept
(:the country-code string)
(:the country-name string)
(:the currency string)
(:the language string))
:annotations ((key (country-code))))

Figure 5: Class Definitions for our Example Domain

and/or to obtain information about it. CSIMS is designed to allow users to query the domain model without
specific knowledge of the way the actual information sources relate to the domain model. The next section
describes how application developers describe the actual information sources and their relationship to the

20

domain model.

;;; Seaport attributes

(def-sims-relation geoloc—code
:domain seaport
:range string)

(def-sims-relation port-name
:domain seaport
:range string)

(def-sims-relation cranes
:domain seaport
:range number)

(def-sims-relation depth
:domain seaport
:Tange number)

(def-sims-relation seaport—country-code
:domain seaport
:range string)

(def-sims-relation country-of

:domain seaport

:range country

:is (:satisfies (7s 7¢)

(:and (seaport 7s)

(country ?c)
(seaport-country-code ?s 7cc)
(country-code ?¢c 7¢c))))

;;; European Large Seaport attributes

(def-sims-relation tariff-code
:domain european-large-seaport
:range string)

;3 Country attributes

(def-sims-relation country-code
:domain country
:range string)

(def-sims-relation country-name
:domain country
:range string)

(def-sims-relation currency
:domain country
:range number)

(def-sims-relation lang
:domain country

:range number) 22

Figure 6: Attribute Definitions for our Example Domain

class-definition ::=
(DEF-SIMS-CONCEPT ClassName
is-clause
annotations-clause)

is-clause ::=
:IS-PRIMITIVE (:AND SuperClassName attr-clausex) |
:IS (:AND SuperClassName constraint-expr#)

annotations—-clause ::=
:ANNOTATIONS (annotationt)

annotation ::=
(KEY (AttributeName+)) |
(COVERING (SubClassName SubClassName+))

attr-clause ::=
(:THE AttributeName ClassName) |
(:THE AttributeName STRING) |
(:THE AttributeName NUMBER)

constraint-expr ::=
(test Term Term) |
(:FILLED-BY AttributeName Term) |
(:NOT-FILLED-BY AttributeName Term)

test ::=
> | < >= | <= | 1= |

Figure 7: BNF for Class Definitions

simple-relation ::=
(DEF-SIMS-RELATION RelationName
:DOMAIN ClassName
:RANGE [NUMBER | STRIKNGI])

defined-relation ::=
(DEFRELATION RelationName
:DOMAIN ClassName
:RANGE ClassName
:IS (:SATISFIES (VariableName VariableName) constraint-expr))

constraint-expr ::=
(:FOR-SOME (VariableName) constraint-expr)
) (:ARD constraint-expr+) |
(AttributeName Term Term) |
(ConceptName Term) |
(test Term Term)

test ::=
> | < 1 > | <= | = |

Figure 8: BNF for Attribute Definitions

4 Defining Information Sources

In order to extract and integrate data from an information source, a person building an application must
describe the contents of the source using terms from the domain model and define the details of how the
source is accessed. Each of these issues is addressed in turn.

4.1 Describing the Contents of an Information Source

Each information source is incorporated into CSIMS by describing the data provided by that source in terms
of the domain model presented in the previous section. This description provides the following information:

o The precise class of instances provided by a source.
o The set of attributes that are available from the source.

e The name of the source that provides the data (the next section will define additional information
about accessing each source)

The mapping from the table/class name of the source and the name used in the domain model.

The mapping from the attribute names used in the source and those used in the domain model.

To illustrate the principles involved in representing an information source within CSIMS, consider how
a set of sources would be represented using the domain model described in the previous section. Figure 9
shows the example domain model linked to a set of seven separate sources.
country--code

rn-name
g p_ﬂ — ?Ln —— @ country—name
pcr - cranes T~ currency
sccE seaport-country-cdde language

covering

= Seaport ~

= Seaport »
(> cranes 7) P

{<= cranes 7)

covering

American
Large
Seaport

European
Large
Seaport

tariff-code

(class inheritance)
domain

| Domain ¥
| Class attributes|
g - e ! (source link)
==
cr provided

attributes

Figure 9: A Set of Sources Described by a Domain Model

In the figure, each source is linked to a class with a dashed line. The meaning of such a link is that the
source provides exactly the set of instances described by the class of the domain model. Thus, the figure
shows that 82, S3, and S7 all provide ezactly the same set of large seaports. If there is another source that
provides only a subset of a class of instances, then a new subclass in the domain model would be created

24

and the source would be linked to that class. Sources S4 and S5 are both examples of sources that provide
subclasses of large seaports and thus are linked to the appropriate subclasses in the domain model.

Since different sources often provide different attributes for the same class, we do not require that all
sources provide all attributes of a class. In the figure, the attributes provided by each source are shown next
to the individual sources.

The general form of a source description statement is shown in Figure 10. There will generally be one
of these statements for each table or relation in a source. However, in some cases, sources can be more
naturally modeled by mapping a single relation in the source into more than one domain class. As shown in
the figure, a domain class is used to describe a source table and DB and the domain attributes are linked to
3 the corresponding attributes of the source.

(source-description <domain-class> <source-table> <source-db>
b (<domain-attribute-1> <source-attribute-1>)
(<domain-attribute-2> <source-attribute-2>)

(<domain-attribute-n> <source-attribute-n>))
Figure 10: General Form of a Source Description

Consider how a specific source in Figure 9 would be described. For source 7, which provides the port
name and depth of Large-Seaport. The description of this source is shown in Figure 11.

(source~description Large-Seaport S7 EXKB7
(port-name pn)
(depth dp))

Figure 11: Source Description for Large-Seaports table of S7 Database

5 Accessing an Information Source

In addition to specifying the content of an information source, the system also needs to know what information
sources are currently available and how to access them. This section describes the basic commands for
declaring information sources.

To make a source available to the system, certain information about the source must be declared in
advance. This information is provided in a IS_FILE (information source file). Currently there are four
predefined source types, and they are explained in the subsections below.

5.1 kqgml-odbc-source

A kgml-odbc-source is a source that supports ODBC communication and the full SQL query language. We

provide KQML-based wrappers that allow CSIMS to communicate with most of the commericial relational

: database systems (for details see 8 and 9.1). An example of how such a source would be declared is shown
below:

(source-type source-name host-name agent—name db-name userid source-status)

where:
source-iype defines the specific type of source.
source-name provides the name of the information source within CSIMS.

hosi-name is the name of the machine on which the information source is running.

25

The agent-name of a source is the unique name that KQML uses to identify the wrapper of that particular
source.

The db-name is the internal database name, which might not be unique since one may have multiple
instances of the same information source running on different hosts.

The userid is the internal userid for a database.
source-status defines the status of a source (can be either UP or DOWNR).

Suppose that source S2 from the previous example (Figure 9) is an Oracle database (i.e., it supports
ODBC communication) named ”assetss” that can be accessed with the userid "abc". It is located on host
»isd54.isi.edu” and the wrapper for this source is called ”sql_server”. We declare this source as follows:

(KQML_ODBC_SOURCE "S2" "isd54.isi.edu" "sql_server" "assetss" "abc" UP)

5.2 kqml-wrapper-source

A kgml-wrapper-source is a wrapper that makes the web sources look like a database and that communicates
through KQML interface.
An example of how such a source would be declared is shown below:

(source-type source-name host-name agent-name source-status)

where:
source-lype defines the specific type of source.
source-name provides the name of the information source within CSIMS.
host-name is the name of the machine on which the information source is running.

The ageni-name of a source is the unique name that KQML uses to identify the wrapper of that particular
source.

source-status defines the status of a source (can be either UP or DOWR).

Suppose that source S3 from the previous example (Figure 9) is a wrapper for a certain website (i.e.
www lg-seaport.com). Since we access this wrapper through KQML, what we need to know are its KQML
agent name and the host name where it is located.

(KQML_ODBC_SOURCE "S3" "isd54.isi.edu" "lg-seaportwrapper"” UP)

5.3 http-wrapper-source

A hitp-wrapper-source is a wrapper that runs through CGI. CSIMS communicates with this type of sources

via HTTP.
An example of how such a source would be declared is shown below:

(source-type domain-name wrapper-name host-name cgi-path port source-status)

26

where:
source-type defines the specific type of source.
domain-name provides the name of the domain name within CSIMS.
wrapper-name provides the name of the wrapper information source within CSIMS.
host-name is the host name of the machine on which the information source-is running.
cgi-path is the relative path to where wrapper.cgi resides.
port is the port number that is used for the HTTP server (default : 80).
source-stalus defines the status of a source (can be either UP or DOWN).

Suppose that source 54 from the previous example (Figure 9) is a http-wrapper for a certain website (i.e.
www.lg-seaport.com).

(HTTP_WRAPPER_SOURCE "seaport-domain” "S4" "isd56.isi.edu" "/cgi-bin/" 8080 UP)

5.4 functional-source

A functional-source is a special type of source that is considered to have in-atiributes and out-atiribules.
Given a set of in-attributes, the functional source provides the corresponding out-attributes. Each functional
source is represented as a user defined function that takes as arguments the in-attributes and produces the
out-attributes. A user that wants to add a functional source must provide both the source declaration in the
IS_FILE and a user-defined function that implements the source. An example of how such a source would
be declared is shown below:

(source-type source-id line-id source-name source-function source-status)
(source-type source-id line-id In-Attr1l In-Attr2 ...)

(source-type source-id line-id Out-Attrl Out-Attr2 ...)

where:

source-lype defines the specific type of source.

source-id is a unique functional source ID.

line-id describes the type of information provided by the current line of the functional source description.
It can take the values INFO, IN_ATTR and OUT_ATTR.

source-name provides the name of the information source within CSIMS.
source-function represents the function name of this specific functional source.
source-stalus defines the status of a source, that can be UP or DOWN.

In the example presented in Figure 9, source ”C2” is a functional source that given the country-border
length in kilometers provides the corresponding length in miles. If the user-defined function corresponding
to this source is called ”KmsToMiles”, we would declare this source as:

(FUNCTIONAL_SOURCE 1 INFO "C2" "KmsToMiles" UP)
(FUNCTIONAL SOURCE 1 IN_ATTR "km")
(FUNCTIONAL SOURCE 1 OUT.ATTR "mi")

L

6 The CSIMS Axiom Language

CSIMS uses axioms to determine the set of information sources that can provide the necessary information
to answer a specific query. Currently, CSIMS accepts axioms that are provided in the format that we will
describe below. Axioms can be provided by RISCSIMS, or they can be written by hand. Given a domain
model (see Section 3) and a set of information source definitions (see Section 4), RISCSIMS is a system
that produces the relevant axioms for the specified domain. If RISCSIMS is not available, axioms can be
written by hand.

6.1 Axiom Syntax

Before defining the actual axioms one has to provide first a domain schema and a source schema.

6.1.1 Domain Schema

For each concept definition in the domain model (see Figure 5) there is a corresponding definition in the
domain schema. In the domain schema, all concept names and attribute names represent domain terms. A
concept definition in the domain schema is represented as:

domain_concept(domain attribute-1 domain_attribute-2 ... domain_attribute-n)
where:

<domain.concept> := <string> , the domain concept name

<domain.attribute> := <string> , the domain attribute name

Looking at the class definitions for our example domain (Figure 5) we write the following domain schema.

country(country code countryname currency kilometers language miles)
european.large_seaport(country of cranes depth geoloc code port.name seaport_country code tariff_code)
american large seaport(country of cranes depth geoloc.code port_name seaport_country_code)

large seaport (country.of cranes depth geoloc.code port.name seaport_country._code)

small seaport (countryof cranes depth geoloc.code port name seaport_country._code)

seaport(country of cranes depth geoloc.code port_name seaport_country_code)

6.1.2 Source Schema

For each source in the set of sources described by a domain model (Figure 11) there is a corresponding
definition in the source schema. In the source schema, concept names and attribute names represent source
terms. A source definition in the source schema is represented as:

source_concept(source_attribute-1 source_attribute-2 ... source_attribute-n)
where:

<source.concept> := <source_concept.name>%<table name>

<source_concept name> := <string>, the name of the source

<table_name> := <string>, the name of the table within the source
<source.attribute> := <source_attributename> | <constant> | <sql function>
<source_attributename> := <string> | $<string>

<constant> := <string> | <number>

<sql function> := ...

e String constants are enclosed with double quotes (e.g., ”a string”).

28

¢ Binding pattern annotations ($) must be used when appropriate. A $ in front of an attribute name
mndicates that the attribute has to be bound in that source.(i.e., it must have a constant value)

For the sources in Figure 11, we write the following source schema:

si¥%si(cr gc pn scc)
ci¥ci(cc ¢n curr km lang)
s2%s2(pn)

s3%s3(gc)

s4%s4(cr gc pn)

sb%s5(cr gc pn tc)
s6%s6(cr pn)

s7%s7(dp pn)

c2%c2($km mi)

6.1.3 Axiom Definition

Each axiom has a left hand side and a right hand side. The former is expressed in domain terms, while
the latter is expressed in source terms. The right hand side may contain a single source definition (Simple
Aziom), a conjunction of source definitions (Conjunctive Aziom), or a disjunction of source definitions
(Disjunctive Aziom).

<axiom> := <simple-axiom> | <conjunctive-axiom> | <disjunctive-axiom>
<simple-axiom> := <domain-concept>{({<variable name>}+) <->
<source-concept>({<variable name>}+)

<conjunctive-axiom> := <simple-axiom> and
{<conjunctive-axiom> | <simple-axiom> | <comstraint>}

<disjunctive-axiom> := { [<conjunctive-axiom>] | <simple-axiom> }
or

{ [<conjunctive-axiom>] | <simple-axiom> }

<comstraint> := <variable> <orderop> <constant>

<variable.name> := 7<string> | _ | ?$<string>
<constant> := <string> | <number>
<orderop> :== | < | > | <= | >=

e The number of variables for a domain concept must be identical to the number of domain attributes
for that same concept as defined in the domain schema, so that the variable in position "i" maps to
the domain attribute in position "i".

o The number of variables of a source concept must be identical to the number of source attributes for
that same concept as defined in the source schema, so that the variable in position "i" maps to the
source attribute in position "i".

e A $in front of a variable name indicates that the corresponding attribute must be bound (i.e., it must
have a constant value).

e A7 in the place of a variable name indicates that this axiom does not provide information about
the corresponding attribute.

e For <constraints>, if <constant> is numeric, any operator may be used. If <constant> is a string,
only "=" is allowed.

e Binding pattern annotations ($) are used in the source clauses (right hand side) and in the domain
clauses (left hand side) when the net result of applying all conjuncts would still require a particular
attribute to be bound.

Example 1: Given the domain schema: domain_concept(A B C) and the source schema: sourcei’sourcel($A
B) source2¥source2($B C) the ariom should be:

domain(?$A ?B 7C) <>
sourcel(?$A 7B) and
source2(?$B 7C)

Note that ?A is marked as a binding variable since no source conjunct establishes it. You should not
mark 7B since it is established by sourcel.

Example 2: If different orders of application can provide distinct axiom binding patterns, multiple
axioms, one corresponding to each pattern, should in general be included. Given the domain schema:
domain_concept(A B C D) and the source schema: sourcel¥sourcel($A B C) source2¥source2(A $B
D) the arioms should be:

domain(?$A 7B ?7C 7D) <->
sourcel(?$A 7B ?C) and
source2(?7$B 7D)

domain(?A 7$B 7C ?D) <->
sourcel(?$A 7B 7?) and

source2(7A 7$B 7D)

Simple Axiom Example:

seaport(_ ?Pcranes _ 7geoloc_code ?port_name ?seaport_country_code)
<-> s1(7cranes ?geoloc._code ?portname ?seaport_country.code)

small_seaport(_ 7cranes . _ 7port.name _)
<-> s6(?cranes ?port_name)

large seaport(_ _ _ ?geoloc_code _ .)
<~> s3(?geoloc_code)

country(?country_code ?countryname ?currency ?kilometers 7language J)
<-> c1(?country_code ?countryname ?currency 7kilometers ?language)

Conjunctive Axiom Example:

small_seaport(_ ?cranes . 7geoloc_code ?port.name ?seaport_country.code)
<-> si1(?cranes ?geoloc_code ?port_name ?seaport_country.code)
and s6(?cranes ?port_name)

small seaport(_ ?cranes _ ?geoloc.code ?portname ?seaport_country.code)

<-> si(?cranes ?geoloc_code ?port._name ?seaport_country_code)
and ?cranes <= 7

30

-~

large seaport(_ ?cranes 7depth ?geoloc.code ?port.name ?seaport_country._code)
<-> si(7cranes ?geoloc._code 7port.name ?seaport_country_code)
and s7(?depth ?port.name)

country(?country code ?country name ?currency 7kilometers ?7language 7miles)
<-> c1(7country.code ?country name ?currency ?kilometers ?language)
and c2(?kilometers ?miles)

Disjunctive Axiom Example:

seaport(_ _ _ _ ?port.name _)
<~> s2(?port_name)
or s6(_ 7port_name)

seaport(_ ?cranes _ _ 7port.name _)
<~> s4(?cranes . ?port_name)
or s5(7cranes . ?port.name _)
or s6é(?cranes 7port_name)

large seaport(_ ?cranes ?depth ?geoloc_code ?port_name _)
<-> [s4(?cranes 7geoloc_code 7port_name)
and s7(?depth ?port.name)]
or [sb6(7cranes ?geoloc_code 7portname _)
and s7(?depth ?port._name)]

6.1.4 SQL Functions

7 The CSIMS Plan Language

We have seen in Section 1.1 that CSIMS can take as input a query, generate a plan for this query, and
execute this plan to obtain the query results. In some cases, for instance if we have to execute a query over
and over again, it might be desireable to give as an input to CSIMS the plan instead of the guery. In this
case, the plan generation code is skipped, and CSIMS just executes the given plan.

The CSIMS plan language is the following:

<CSIMS_Plan> := CSIMS PLAN[[<initial node>] [<output_node>]
{[<retrievenode>] | {[<optional node>]}+}]

<optional.node> := <retrievenode> | <join node> | <select_node> |
<assignment.node> | <binary union node>

<initial node> := <general_information>

<output.node> := <general_ information>

<retrievenode> := <general information> Source:<string> SQL:<string>
<joinnode> := <general information> JoinConditions:{<join expression>+}

<select.node> := <general information> Selection:<select_expression>

<assignment node> := <gemeral_ information> AssignmentExpression:<assignment expression>
<binary union.node> := <general_information>
<join_expression> := (<orderop> <variable> <variable>)
<select expression> := (<orderop> <variable> {<variable>|<constant>})
<assignment expression> := (:= <variable> {<string> | <arith_ expression>})
<general_information> := ID:<int> TYPE:<node_type>

ProjectionVariables:{<variable>}+

From:<int>

<node_type> := InitialNode | output | retrieve |
join | select | binaryunion | assignment

<arith_expression> := <number> | <variable> |
(<arithop> <arith_expression> <arith_expression>)

<variable> := ?<string>
<constant> := <string> | <number>
<arithop> := + | = | * | /
<orderop> := = | < | > | <= | >=

e The ID of the initial_node is always 0.
e The ID of the outpui_node is always 1.

e From defines the edges in the plan. For example, “From: 3” denotes that there is an edge in the plan
from the node with ID 3 to the current node.

e The inilial_node always has an empty From.
e The retrieve_nodes always have “From: 0”.

e The Projection Variables represent the variables that have to be present in the query result of a certain
node.

o For a retrieve node we have to specify the SQL query and the source that provides information about
this query.

For example, lets consider the query “list the geoloc codes, number of cranes and port name for all large
seaports with more than 10 cranes”, which has the following Loom representation:

(sims-retrieve(?gc 7cr 7pn)
(:and (large_seaport ?1s)
(geoloc.code ?1s 7gc)
(cranes ?1s 7cr)
(port name 71s ?pn)
(:= 7A 10)
(> 7cr 74)))

32

and lets consider that the axiom used for this query is:

large seaport (. ?cranes ?depth 7geoloc_code ?port.name _)
<~-> [s4(?cranes ?7geoloc_code ?port.name) and
s7(7depth 7port_name)]
or
[s5(?cranes ?geoloc_code ?portmname _) and
s7(?depth ?port_name)]

We can write the following plan according to the plan language specified above:

CSIMS_PLAN[

[
ID : O
TYPE : InitialNode
ProjectionVariable :
From :

ID : 1

TYPE : output

ProjectionVariables : ?geoloc_code0 ?cranesl 7port_name2
From : 2

ID : 6

TYPE : retrieve

ProjectionVariables : 7csx_port._name3
Source: s7

SQL : “"select distinct large seaport2.pn from s7 large_seaport2”
From : 0

J

L
ID : 7

TYPE : retrieve

ProjectionVariables : 7port_name2 ?geoloc_code0 ?cranesi

Source: s4

SQL : "select distinct large.seaportli.pn, large.seaportl.gc,
large seaportl.cr from s4 large.seaporti”

From : O

]

C
ID : &
TYPE : join

ProjectionVariables : 7geoloc_code0 7cranesl 7port_name2
JoinConditions : (= ?csx_port name3 ?port name2)
From : 6 7

33

ID: 9

TYPE :

retrieve

ProjectionVariables : 7csx_port_name4
Source: s7

SQL :
From :

ID : 1
TYPE :

"select distinct large seaport4.pn from s7 large_seaport4”
0

0
retrieve

ProjectionVariables : ?port.name2 ?geoloc_code0 ?cranesi
Source: s5

SqQL :

From :

ID : 8

TYPE :

"select distinct large seaport3.pn, large seaport3.gc,
large seaport3.cr from s5 large_seaport3"
0

join

ProjectionVariables : ?geoloc_code0 ?cranesl ?port_name2
JoinConditions : (= ?csx_port_name4 ?port_name2)

From :

ID : 4

TYPE :

9 10

binary_union

ProjectionVariables : 7geoloc.code0 ?cranesi 7port_name?2

From :

ID : 3

TYPE :

68

assignment

ProjectionVariables : 7geoloc_code0 ?cranesi ?port_name2 ?a
AxxignmentExpression : (:= ?a 10)

From :

ID : 2

TYPE :

4

select

ProjectionVariables : ?geoloc_code0 Tcranesi ?port_name2
Selection : (> 7cranesl ?7a)

From :

3

34

8 Information-Source Wrappers

Once the CSIMS planner has selected the desired sources for a user’s query and devised a plan for obtaining .
the required information, it must communicate with the individual information sources. Sometimes the
information source may be complex and difficult to communicate with and additional data processing or
functionality may be required. In order to modularize this process and cleanly separate query planning from
communication issues, CSIMS requires that for each type of information source there exist a wrapper with
which it will communicate. The purpose of the wrapper is to mediate between CSIMS and the information
source. The wrapper must be capable of translating between the query language obtained from CSIMS and
the information source’s query language if necessary, as well as translating between the data output format
of the information source and a format appropriate for CSIMS.

This section explains how wrappers are used by CSIMS. The first subsection describes the data that is
communicated. The subsequent subsections describe the protocols by which the data is passed; KQML and

CORBA.

8.1 Information Source Wrappers

An information source’s wrapper will receive a query from CSIMS as input. The syntax of this query
language can be varied, so long as the wrapper and CSIMS have agreed upon it. Predefined examples
include the CSIMS query language or SQL. See section ?? for more on information sources. One restriction
is that all concepts and roles used in the query will be drawn orly from that information source. Note that
at the time when such communication takes place CSIMS has already determined that the query being sent
to the information source can be processed in its entirety by that source alone.

The information source’s wrapper performs any necessary mediation between CSIMS and the information
source. This may involve translating the query into the information source’s particular query language,
providing additional information to the information source or any other necessary reconciliation between
CSIMS and the information source. It then submits a query to the source and retrieves the data. Next,
it packages this data into a list of tuples corresponding to the variable parameters used in the submitted
query. This tuple is then returned to CSIMS. See Figure 12.

WRAPPER
Pras - T~ ~
// ~ ~
SIMS QUERY // \\
% INFORMATION AN
/ R \
— >
Coo-= 1 |/ WRAPPER \
- — PE
-7 \ EUNCTIONS INFORMATION ‘
! /
. \ -
/
QUERY PLAN N DATA ,
N 4
TUPLES "\ -
~ -
\\ -
~ ~ — - -

—— e —

Figure 12: Data Flow between SIMS and Wrappers

In this way, CSIMS is insulated from the particulars of each information source. All the complexity of
an information source is hidden from CSIMS via the wrapper module.

9 Communication Issues

9.1 Remote Communication Using KQML

Knowledge Query and Manipulation Language (KQML) protocol, is a language for communication and
knowledge sharing between autonomous programs. A simplified view of KQML-based communication is
presented in Figure 13.

———

- ~ Wrapper

~N

A

CLIENT PROGRAM | KQML KQML . \
(KQML Application) SIMS MEDIATOR ~ |=—=| | Information Sources)

\ ,

N h N, P 4

~
h \ | > — -
\ | P 4
\\ [/
\\\\ \'y/ /’/’
Agent Name Server (ANS)

Figure 13: Communication via KQML

For our purpose, KQML provides two main types of functionality that ease the communication between
clients and servers (KQML refers to both clients and servers as agents). KQML provides a flexible standard
language for client-server communication that is available for many platforms, as well as implementation in
different languages. It also provides a registry of all clients and servers, so that a client only need to refer
to the name registered on the registry by the server (which is usually the name of the service provided and
hence more meaningful than just a host address) to communicate with the servers.

The central registry of services in KQML is called the agent name server (ANS), and it records all KQML
agents and their addresses. We are mostly interested in the ANS for providing the addresses of information
source wrappers CSIMS needs to communicate with (this address resolution process happens transparently
and does not require user intervention). The client and server must both be registered with the ANS. The
environment variable KQML_ANS specifies where the ANS is located, and both the client and server should
agree on an ANS accessible to both. An agent is registered using a unique name of the following form,
<user>Q<host>-<timestamp>.

Note that the KQML clients/servers only contact the ANS once to verify the existence of a server and to
get its address. The user need not know where a particular server is located but only its name (e.g., SQL-
QUERY-SERVER). KQML transparently resolves the location through the ANS and caches each resolved
location. The communication protocol used by KQML is TCP/IP. KQML creates a process that listens on
a remote TCP/IP stream in order to detect messages from remote hosts.

The ANS used by KQML must be accessible to both CSIMS and to any users of the CSIMS system, but
need not be run on those systems itself.

The client must know the messages supported by the server program because only those can be processed.
In KQML terms, CSIMS acts as a mediator between the client and the information sources. A KQML medi-
ator receives a request and either delegates it to one or more other servers, or processes it internally/locally
(e.g., in a local database). Hence the information source server needs to define a handler for the messages it
will support and the client needs to know these messages together with their form.

CSIMS currently uses the :ASK-ALL KQML performative to communicate with remote information
source servers. The KQML message sent by CSIMS to the information source servers are of the form:

(:ASK-ALL :SENDER <SIMS server> :RECEIVER <info-source server>
:REPLY-WITH T :CONTENT (<SQL query><hostname:dbname><username>))

36

9.2 Remote Communication Using CORBA

As CORBA [1] is supported by virtually all the industry leaders, making CSIMS a CORBA-compliant appli-
cation broadens the area of potential CSIMS application. For instance, any CORBA-compliant application
is able to act like a CSIMS client (i.e., to send queries to CSIMS and to receive the returned answers). A
simplified view of CORBA-based communication is presented in Figure 14.

CSIMS CLIENT ‘
(CORBA Appilication)

CORBA
l
CORBA SERVER
Agent Name Server (ANS) < — — — =1 CSIMS
A KQML CLIENT
] >
™~
g KQML
~
\ —————
o — T~
e
/\ information Sources
~
~ - -
~— __ Wrapper -

—_— —e —

Figure 14: Communication via CORBA

CORBA defines distributed services for inter-process and inter-platform messaging, and it provides inter-
operability between applications written in different programming languages, running on different machines
in heterogeneous, distributed environments. CORBA is an interoperability standard that has several imple-
mentations (e.g., Orbix, ILU, VisiBroker), and we currently support the Orbix 2.3 [2] implementation. ,

Based on our CSIMS-CORBA-Server, any number of CORBA-compliant applications can use CSIMS as
a query-answering system.

Figure 15 shows a simple example of a CORBA client that reads a query specified as a command
line argument and sends it to the CSIMS server named CORBA2SIMS which is located on the machine
vigor.isi.edu.

main(int argc, char **argv)

{

CORBA2SIMS* anObj = NULL;
char *query;

if (arge>=2) {
query=argv[i];
} else {

printf("Usage: client querystring");

exit(1);

}

TRY{

}

CATCHANY{

anObj = CORBA2SIMS:: bind(":CORBA2SIMS","vigor.isi.edu",IT.X);

cout << "error" << ITX << endl;

}

ENDTRY

TRY{
char * answer=NULL;

long res = anObj->SendQuery(query, answer);

if(answer!=0){
cout << answer;
CORBA: :string free(answer);

}

if(res!=1){

cout << "SendQuery returned error" << flush;

}
}

CATCH(CORBA: : SystemException &se){

cout << "QQQQ #### CORBA 2 SIMS exception raised!!!" << endl;

cout << endl << &se <<endl;

Figure 15: CORBA client

38

]

pm—

10 Compiling and Running CSIMS

10.1 Compiling CSIMS

In order to compile CSIMS, make the required changes to the Makefile (read the file COMPILE. info that
comes with the distribution), and execute one of the following commands:

- make planner : creates the executable planner, which is the stand-alone CSIMS;

- make kqml : creates the executable server, which is the version of CSIMS that can be accessed as a
KQML agent;

-make corba : creates the executables CORBA2SIMS and corba.client. The former is the CSIMS CORBA
server, while the latter is an example of a CORBA client application.

10.2 Configuring CSIMS
10.2.1 Required Files

CSIMS provides a configuration file that includes all CSIMS configuration variables. Before running CSIMS
you must ensure that the system has access to an.axiom file (AXIOM_FILE) that contains axioms for a
specific domain (in the format specified in Section 6) and a information source file (IS_FILE) that contains -
the source declarations (see Section 4). '

10.2.2 Owutput Formats

CSIMS can produce the resulted tuples in different formats. The variable OUTPUT_.FORMAT specifies the
output format. Available formats are: tab delimited format, generic OEM format and dynamic OEM format
(the default is dynamic OEM format).

10.2.3 Optimization

By default, CSIMS generates an initial plan for your query, and executes that plan (replanning on failure).
If you would like to optimize your initial plan using Planning by Rewriting (PbR), you must set the variable
REWRITE, and the variable NR_OF_NEW_PLANS. The higher the number of NR_.OF_NEW_PLANS, the

better the optimization.

10.3 Using KQML

If KQML is used in the system, set accordingly the KQML_HOME and KQML_HOST variables in the
configuration file. KQML_HOST represents the hostname of the KQML ANS, (for details see Section 8).
To start an ANS execute the command:

($KQML_HOME) /bin/startans "hostname”

In order to check which agents are available in an ANS, or to verify that a service that was registered is up,
run the following command in a UNIX shell:

($KQML_HOME) /bin/agentls

39

10.4 Using CORBA

If CORBA is used in the system, set accordingly the ORBIX_HOME variable in the configuration file.
To start the CORBA daemon, execute:

($0RBIX_HOME)/bin/orbixd

In order to check what servers are registered with the daemon, run the command:

($ORBIX_HOME)/bin/1sit

10.5 Trouble Shooting

In order to be able to handle errors more efficiently, we have created an error hierarchy that describes the
types of errors currently handled by CSIMS. These errors are trapped throughout the execution process (by
CSIMS itself, by the wrappers, etc) and sent back to the CSIMS server where they are handled appropriately.
The current error hierarchy is described in Figure 16.

CSIMS Error

Runtime Error

Llnformation Source Related Error
Database Error

——Unknown Password Error

—— QOracle Error

Network Error

Unknown Host Error

Communications Error

L KQML Error

Driver Error

——ODBC Error
Unobtainable Error

Syntax Error

System Error

tMemory Allocation Error

Figure 16: CSIMS Error Hierarchy

40

In case of an error, CSIMS will display an error message and exit. The error message should provide
enough information for you to be able to eliminate the error. Common errors are Syntaz Error and Infor-
mation Source Related Error. Syntaz Error occurs if the format of an axiom or the query is incorrect while
Information Source Related Error can occur during the communicating with the information sources (for
example, KQML is down, a database is down, a userid is incorrect, etc.).

CSIMS also provides a tracing mechanism. If the variable CSIMS.TRACE is set (i.e., values 1-7),
tracing information is displayed. The higher the value of CSIMS_TRACE, the more information is displayed.
The information can be shown on your screen or in a file (the default is on the screen). If the variable
TRACE_FILE is set, all trace information is printed to that file.

10.6 Running CSIMS Si:andalone.

To run CSIMS standalone, make the required changes to the configuration file (see Sections 10.2, 10.3,
10.4), execute the configuration file, and then execute the command:

planner “query file"

where planner is the CSIMS executable, and guery_file is a file that contains a query in LOOM or SQL
syntax.

10.7 Running CSIMS as a KQML Agent

To run CSIMS as a KQML agent, make the required changes to the configuration file {(see Sections 10.2,10.3,
10.4), execute the configuration file, and then execute the command:

server "agent_name"

where server is the KQML agent executable, and agent_name is the name by which this agent will be
registered with the ANS. The agent expects requests in the form:

(:ASK-ALL :RECEIVER <CSIMS agent>
:REPLY-WITH T :CONTENT <query>)

where ”CSIMS agent” is the ”agent_name” and ”query” is a SQL query.

10.8 Running CSIMS as a CORBA Server

To run CSIMS as a CORBA server, make the required changes to the configuration file (see Sections
10.2, 10.3, 10.4), execute the configuration file, and then register the CSIMS server with the Orbix daemon:

putit CORBA2SIMS ($CSIMS_HOME)/CORBA2SIMS
chmodit i+all
chmodit 1l+all

where CORBA2SIMS is the CSIMS server executable. Use the generated CORBA client program to test

your server. Execute:

client "query"

where ”query” is a SQL or LOOM query.

41

10.9 Running CSIMS from a CGI Script

CSIMS can also be accessed through HTTP requests that contain the query that CSIMS must execute.
The CGI script invokes CSIMS as a stand-alone process (see Section 10.6) and handles the query result
received from CSIMS. The CGI script can configure CSIMS according to Section 10.2 by setting the relevant
environment variables from the configuration file.

10.10 Running CSIMS from the GUI

First, start the CSIMS server on some port number.

planner -port[port number]

You have to have JDK1.2 installed in order to use GUI. Launching a GUI application is as simple as
running simsgui.csh. If $JAVA ; OM Eenvironmentvariableisnotset, thesriptwillaskyoutoprovideit.

simsgui.csh

Applet version of CSIMS GUlI is also available. Use the following template HTML tags to embed a CSIMS
GUI applet in an HTML page. Because applet is not allowed to create socket connections to anywhere but
the same host from where itself is downloaded, CSIMS server must run on the same host with the HT'TP
server.

<APPLET CODE=SIMS WIDTH=[number in pixel] HEIGHT=[number in pixel]>
<PARAM NAME=host VALUE="[host name]">

<PARAM NAME=port VALUE=[port number 1>

</APPLET>

If your browser supports JDK1.2, you can view the HTML page in the browser, otherwise, use ap-
pletviewer that comes with JDK1.2. ’simsguiapplet.csh’ is also included in the package.

simsguiapplet.csh

Users can either type the query (SQL/SIMS) directly to the query fields or select from the avaiable query
list in the menu. GUI shows the graph representation of the query plan and also the execution status of the
plan. The status of the information sources can also be manipulated through GUI. For detailed instruction
on how to use, see http://ariadne.isi.edu/simsgui.htnl.

42

11 System Requirements

The CSIMS system currently runs in C++ under Solaris on SUN workstations. CSIMS requires the following
software components: ‘

KQML (Knowledge Query and Manipulation Language) provides remote communication support between
CSIMS and remote DB servers, and between other information integration agents and CSIMS. We are
currently using KQML version 2.06. Included with the CSIMS release are several patches which improve
the performance of KQML in the CSIMS world. KQML is available by signing a license with University
of Maryland, Baltimore County. For more information, see http://www. cs.umbc.edu/kqml/.

ODBC. We include with CSIMS code that provides a programmatic interface to Oracle databases using
ODBC. We currently use ODBC 3.02 from InterSolv. This component is optional since CSIMS can be
run with any database wrapper you may choose to implement.

CORBA. We also include with CSIMS code that allows you to communicate with CSIMS via CORBA.
This is optional as well. It does require ORBIX version 2.3 from Iona Technologies to run. For more
information on ORBIX, see http://wuw.iona.com/.

STL. CSIMS requires ObjectSpace’s C++ Standard<Toolkit> version 2.1, which can be obtained from
http://www.objectspace.com/.

FLEX++ and BISON+4+. CSIMS requires flex++ version 2.3.8-7 and bison++ version 1.2.1-8 for tok-

enization and parsing.

43

12 Coded Example

This section gives the code that implements the example discussed throughout the manual.

Vi
;73 Domain model for the example in the SIMS user manual

23

(in-package :sims)
(in-context :example)

335 Seaport relations

(def-sims-relation geoloc-code
:domain seaport
:range string)

(def-sims-relation port-name
:domain seaport
:range string)

(def-sims-relation cranes
:domain seaport
:range number)

(def-sims-relation depth
:domain seaport
:range number)

(def-sims-relation tariff-code
:domain european-large-seaport
:range string)

(def-sims-relation seaport-country-code
:domain seaport
:range string)

;33 Seaport concepts

(def-gims-concept american-large-seaport
:is-primitive large-seaport
rannotations ((key (geoloc-cods))

(key (port-name))))

(def-sims-concept european-large-seaport
:is-primitive (:and large-seaport
(:the tariff-code string))
:annotations ((key (geoloc-code))
(key (port-name))))

(def-sims-concept large-seaport
:is (:and seaport
(> cranes 7))
:annotations ((key (geoloc-code))
(key (port-name))
(covering (american-large-seaport
european-large-seaport))))

(def-sims—concept small-seaport
:is (:and seaport
(<= cranes 7))
:annotations ((key (geoloc-code))
(key (port-name))))

(def-sims-concept seaport

44

:is-primitive (:and sims-domain-concept
(:the country-of country)
(:the geoloc-code string)
(:the seaport-country-code string)
(:the port-name string)
(:the cranes number)
(:the depth number))
:annotations ((key (geoloc-code))
(key (port-name))
(covering (large-seaport small-seaport))))

;33 Country relations

(def-sims-relation country-code
:domain country
:range string)

(def-sims-relation country-name
:domain country
:range string)

(def-sims-relation currency
:domain country
:range number)

(def-sims-relation language
:domain country
:range number)

;;; Country concepts

(def-sims-concept country
:is-primitive (:and sims-domain-concept
(:the country-code string)
(:the country-name string)
(:the language string)
(:the currency string))
:annotations ((key (country-code))))

(def-sims-relation country~of
:domain seaport
:range country
:is (:satisfies (?s 7¢)
(:for-some (7country-code)
(:and (seaport 7s)
(country 7¢)
(seaport-country-code 7s 7country-code)
(country-code ?c 7country-code)))))

45

33
;3; Example queries

(in-package :sims)
(in-context :example)

(setq *queriess
’(;; Large Seaport queries

(11 "¥hat the geoloc codes of all large seaports"
(sims-retrieve (?geoloc-code)

(:and (large-seaport 71s)

(geoloc-code 71s 7geoloc-code))))

(12 "How many cranes are available in various large seaports”
(sims-retrieve (7cr)

(:and (large-seaport ?1s)

(cranes ?1s 7c¢r))))

(13 "List the geoloc-codes and number of cranes for all large
seaports”
(sims-retrieve (?gecloc-code 7cr)
(:and (large-seaport 7ls)
(geoloc-code ?1s ?geoloc~code)
(cranes 71s ?cr))))

(106 "List currency and language for all countries”
(sims-retrieve (?cc 7cn ?currency ?lang)

(:and (country ?c¢)

(country-code 7c ?cc)

(country-name ?c 7cn)

(currency ?c Zcurrency)

(language ?c ?lang))))

(107 "List all countries’ currency, language, and seaport information"
(sims-retrieve (7cc 7cn Tcurrency ?lang 7cr 7gecloc-code 7port-name)

(:and (country ?c)

(country-code ?c ?cc)

(country-name ?c 7cn)

(currency 7c 7currency)

(language ?c¢ ?lang)

(seaport 7s)

(cranes ?s 7cr)

(geoloc-code ?s ?geoloc-code)

(port-name 7s ?port-name)

(country-of ?s 7c))))

»

46

A

PPN IIIIIF LN NNI IS LI IIINNININEINYY
Vi ’
;33 Example source model of EXKBI for SIMS manual

12

(in-package :sims)
(in-context :example)

;3 Define a new Loom KB data source called EXKB1
(define-source EXKB1 loom-kb-source)
;35 Describe the domain in terms of EXKB1

(source-description seaport s1 EXKB1
(geoloc-code gc)
(port-name pn)
(cranes cr)
(seaport-country-code scc))

(source-description country ci EXKB1
(country-code cc)
(country-name cn)
(language lang)
(currency curr))

;3; Load data (facts) into this new data source
;33 Seaport data

(deffact EXKB1 S1 ABIDJAX
(P¥ “Abidjan")
(GC "AAPV")
(CR 5)
(scc "1y"))

(deffact EXKB1 S1 VLORE
(PE “Vlore")
(GC “YALP")
(CR 1)
(SCC “AL"))

;33 Country data

(deffact EXKBL1 C1 ALBANIA
(CC "AL")
(CH "ALBANIA")
(LANG "ALBANIAN")
(CURR "LEK"))

(deffact EXKB1 C1 ZIMBABWE
(cc *z1)
(CH “ZIMBABWE")
(LANG “EBNGLISH")
(CURR "DOLLAR"))

47

1
;53 Example source model of EXDB for SIMS manual

1

(in-package :sims)
(in-context :example)

;33 Define a new SQL database, addressed using ODBC alias name,
;35 communication via KQML, called EXDB

(define-source EXDB kqml-odbc-sql-source
thost "isd18.isi.edu"
:agent-name "sql_server"
:db-name "examplei’
:userid "ifd")

i3 Describe the domain in terms of EXDB

(source~description large-seaport 1gsp exdb
(geoloc-code gc)
(depth dp)
(port-name pn)
(cranes cr)
(seaport-country-code scc))

(source~description small-seaport smsp exdb
(geoloc-code gc)
(port-name pn)
(cranes cr)
(seaport-country-code scc))

(source-description european-large-seaport lgeurosp exdb
(geoloc-code gc)
(depth dp)
(port-name pn)
(cranes cr)
(tariff-code tc)
(seaport-country-code scc))

(source-description american-~large-seaport lgamersp exdb
(geoloc-code gc)
(depth dp)
(port-name pn)
(cranes cr)
(seaport~country-code scc))

(source-description seaport sp exdb
(geoloc-code gc)
(port-name pn)
(cranes cr)
(seaport-country-code scc))

(source-description country ctry exdb
(country-code cc)
(country-name cn)
(language lang)
(currency curr))

;33 Mo KB facts

48

13

Additional Reading

Using this manual and following the instructions in it require familiarity with SIMS, as well as with the
Loom knowledge representation language, and the KQML transport protocol.
The following papers may be consulted for further information about these programs.

13.1 SIMS

1.

10.

11.

12.

13.

14.

Ambite, J.L. and Craig A. Knoblock Reconciling Distributed Information Sources. Working Noles of
the AAAI Spring Symposium on Information Gathering in Distributed Heterogeneous Environments,
Palo Alto, CA, 1995.

. Ambite, J.L., Yigal Arens, Naveen Ashish, Chin Y. Chee, Chun-Nan Hsu, Craig A. Knoblock Wei-Min

Shen, and Sheila Tejada. 1995. The SIMS Manual, Version 1.0. ISI/TM-95-428.

. Arens, Y., Craig A. Knoblock and Chun-Nan Hsu. Query Processing in the SIMS Information Medi-

ator. Advanced Planning Technology, editor, Austin Tate, AAAI Press, Menlo Park, CA, 1996.

. Arens, Y., Chee, C.Y., Hsu, C-N., and Knoblock, C.A. 1993. Retrieving and Integrating Data from

Multiple Information Sources. In International Journal of Intelligent and Cooperaiive Information

Systems. Vol. 2, No. 2. Pp. 127-158.

. Arens, Y., Knoblock, C.A., and Shen W-M. Query Reformulation for Dynamic Information Integration,

Journal of Intelligent Information Systems, 6(2/3):99-130, 1996.

. Arens, Y. and Knoblock, C.A. 1994. Intelligent Caching: Selecting, Representing, and Reusing Data

in an Information Server. In Proceedings of the Third International Conference on Information and

Knowledge Management (CIKM-94), Gaithersburg, MD.

. Arens, Y., Chin' Y. Chee, Chun-Nan Hsu, and Craig A. Knoblock Retrieving and Integrating Data

from Multiple Information Sources. International Journal of Intelligent and Cooperative Information

~Systems. Vol. 2, No. 2. Pp. 127-158, 1993.
. Arens, Y. and Knoblock, C.A. 1992. Planning and Reformulating Queries for Semantically-Modeled

Multidatabase Systems, Proceedings of the First International Conference on Information and Knowl-
edge Management (CIKM-92), Baltimore, MD.

. Hsu, C-N., and Knoblock, C.A. 1995. Estimating the Robustness of Discovered Knowledge, in Pro-

ceedings of the First International Conference on Knowledge Discovery and Data Mining (KDD-95),
Montreal, Quebec, Canada.

Hsu, C-N., and Knoblock, C.A. 1995. Using inductive learning to gen- erate rules for semantic query
optimization. In Gregory Piatetsky-Shapiro and Usama Fayyad, editors, Advances in Knowledge Dis-
covery and Data Mining, chapter 17. MIT Press.

Hsu, C-N., and Knoblock, C.A. 1994. Rule Induction for Semantic Query Optimization, in Proceedings
of the Eleventh Iniernational Conference on Machine Learning (ML-95), New Brunswick, NJ.

Hsu, C-N., and Knoblock, C.A. 1993. Reformulating Query Plans For Multidatabase Systems. In Pro-
ceedings of the Second International Conference of Information and Knowledge Management (CIKM-
98), Washington, D.C.

Hsu, C.-N. and Knoblock, C. A. Discovering Robust Knowledge from Dynamic Closed-World Data.
Proceedings of the Thirteenth National Conference on Artificial Inielligence, Portland, Oregon, 1996.

Knoblock, C.A., Arens, Y. and Hsu, C-N. 1994. An Architecture for Information Retrieval Agents. In
Proceedings of the Second International Conference on Cooperative Information Systems, University
of Toronto Publications, Toronto, Ontario, Canada.

49

15. Knoblock, C.A. 1995. Planning, Executing, Sensing, and Replanning for Information Gathering. In
IJCAI-95, Montreal, Quebec, Canada.

16. Craig A. Knoblock Applying a General-Purpose Planner to the Problem of Query Access Planning.
Proceedings of the AAAI Fall Symposium on Planning and Learning: On to Real Applications, 1994.

17. Knoblock, C.A. 1994. Generating Parallel Execution Plans with a Partial-Order Planner. Artificial
Intelligence Planning Systems: Proceedings of the Second International Conference (AIPS94), Chicago,
IL.

18. Craig A. Knoblock Building a Planner for Information Gathering: A Report from the Trenches Ar-
tificial Intelligence Planning Systems: Proceedings of the Third Internalional Conference (AIPS96),
Edinburgh, Scotland, 1996.

19. Craig A. Knoblock and Jose Luis Ambite. Agents for Information Gathering Software Agents, J.
Bradshaw ed., AAAI/MIT Press, Menlo Park, CA, 1997.

20. Craig A. Knoblock, Yigal Arens, and Chun-Nan Hsu. Cooperating Agents for Information Retrieval.
Proceedings of the Second Inlernational Conference on Cooperalive Information Systems, Toronto,
Ontario, Canada, University of Toronto Press, 1994.

These publications, as well as additional information about SIMS, can be accessed through the WWW
at http://www.isi.edu/sims/.

13.2 Loom

1. MacGregor, R. A Deductive Pattern Matcher. In Proceedings of AAAI-88, The National Conference
on Artificial Intelligence. St. Paul, MN, August 1988.

2. MacGregor, R. The Evolving Technology of Classification-Based Knowledge Representation Systems.
In John Sowa (ed.), Principles of Semantic Nelworks: Ezplorations in the Representation of Knowledge.
Morgan Kaufmann. 1990.

Additional papers and information about Loom can be accessed trough the WWW at the Loom Project
homepage: http://www.isi.edu/isd/LOOM/LOOM-HOME.html .

13.3 KQML

1. Finin, T., Fritzson, R. and McKay, D. A Language and Protocol to Support Intelligent Agent Inter-
operability. In Proceedings of the CE and CALS Washington ’92 Conference, June, 1992.

Additional papers and information about KQML can be accessed through the WWW at the KQML
homepage: http://www.cs.umbc. edu/kqml/ .

13.4 CORBA related
1. Iona Technologies. Orbix 2.2: Programming Guide. March 1997.

2. Object Management group. The Common Object Request Broker: architecture and specification.
OMG Document Number 91.12.1, 1991.

50

Acknowledgements

We would like to thank the developers of the software systems that we have used extensively in the construc-
tion of SIMS. In particular, thanks to Bob MacGregor and Tom Russ for the Loom knowledge representation
system. Thanks to Don McKay, Jon Pastor, and Robin McEntire at Paramax/Unisys/Loral for their im-
plementation of the KQML language. And thanks to Dan Weld and Tony Barrett at the University of
Washington for the UCPOP planner, which we used to build the SIMS planner. In addition, thanks to Ping
Luo for his testing of and feedback on an earlier version of this manual.

References

[1] Object Management group. The Common Object Request Broker: architecture and specification, volume
OMG Document Number 91.12.1. Object Management group, 1991.

[2] Tona Technologies. Orbix 2.2: Programming Guide. Tona Technologies, March 1997.

51

APPENDIX Il: WARFIGHTER S INFORMATION PACKAGER

Warfighter s Information Packager

Appeared in:
Proceedings of the Tenth Annual Conference on Innovative Applications of
Atrtificial Intelligence (IAAI-98).
Madison, Wisconsin, July 27-29, 1998.
Pp. 1095—1100.

52

Warfighter’s Information Packager

Yigal Arens Yongwon Lee Marc Zev
Weixiong Zhang Jon Dukes-Schlossberg
USC/Information Sciences Institute Lockheed Martin ISX Corporation
4676 Admiralty Way Intelligent Systems Center 4353 Park Terrace Dr.
Marina del Rey, CA 90292 3251 Hanover St. H1-43 Westlake Village, CA 91361
Palo Alto, CA 94304
{arens,zhang} @isi.edu {ylee,slosh} @ict.atc.lmco.com mzev@isx.com

problem: When information is generated in many sources
Abstract and on a continual basis, it is onerous and inefficient to
require users to issue multiple repeated queries for their
information. It would be far more efficient if
responsibility for disseminating the information were
transferred to the sources. The sources contain the actual
information and can more readily detect changes. In such
an architecture, the consumer registers an information
WIP is based on research performed under DARPA’s profile with the source, or with a system overseeing the
Intelligent Integration of Information program. WIP source, that describes the kind of information they need.

uses a combination of Al and non-Al technologies to . .
& There are many ways in which such a scheme may be

take advantage of the information push technology . .
being developed for DARPA’s Battlefield Awareness and mp]emcme.d. The BA.DD program was es_ta blished to deal
with the issue of information push in a battlefield

Data Di inati ADD , d bei . . .
aa issemmnation ®) program, an cing environment. BADD has chosen an architecture wherein

deployed during the Fall of 1998. . . .
profiles are registered with a central Information

The Warfighter’s Information Packager (WIP) is a suite
of distributed components that allows users to easily
obtain information from diverse heterogeneous data
sources and to display the results in a user-defined
predictable manner.

Together, the WIP components create a distributed Dissemination Manager (IDM), and the IDM ensures that
system that serves as a valuable tool for information data matching the profiles is transferred to the deployed
analysis by: 1) allowing the user to define high-level sources. This still leaves open the questions of how to
information products, information packages, which are construct and use applications that require the pushed data,
parameterized by user interests and specific tasks and and how to determine which profiles must be registered in
roles; 2) providing a web-based package viewer that order to support these applications. The WIP system
dynamically constructs packages for the user on demand addresses these issues.

and performs value-added information linking; 3)
allowing users to make high-value complex information
requests that can span multiple data sources without a
priori knowledge of the schema of the sources,; and 4)
monitoring data sources and anticipating useful
modifications to a user’s information package.

WIP provides end-users with a facility for producing an
information package. WIP, using IDM, ensures that
necessary data is pushed to deployed sources when it is
available. An Information Integrator satisfies information
package queries by retrieving data from the deployed
sources. Throughout both the specification and utilization
of the product, an Anticipator component observes user and
world events and may trigger the modification of existing

1 Problem Description packages. This capability allows profiles to be updated
The Warfighter's Information Packager (WIP) system dynamically, in response to changing circumstances.
addresses the problem of how to support the needs of users The specific problems that WIP addresses are:
to view and manipulate required data in an information 1. The warfighter has a task to perform and has specific
push environment. In such an environment, traditional information needs. Information needs in BADD are
query-based data retrieval is replaced by asynchronous specified as profiles that do not necessarily match up
information ~ delivery based on information profiles conveniently with actual source queries. This is due to the
registered with sources. : profile registration facility of the IDM having a language
Information push is intended to address the following far less powerful than familiar database query languages.

Furthermore, the context in which the task ends up being
performed may require variation of the profile—something
Copyright © 1998, American Association for Artificial that is hard for the end-user to anticipate.
Intelligence (www.aaai.org). All rights reserved.

53

> Anticipator

y

Profile Handler

1% /] ?Proﬁles

Product Packager

Information
Integrator

ploy ploy
Source Source

Figure 1: Information Package Specification

IDM

Profile
Registration

Define %
i

2. The data is delivered to the end-user’s computer
environment in formats that may differ from one
environment to the next due to variations in data
management facilities. For example, one warfighter may
have a database facility available for a certain type of data,
while another may not. In such a situation the IDM will
deposit the information in a file. For similar reasons, data
storage formats used in the deployed sources may differ
from those used in original sources against which the
profiles are registered. In addition, data needed for a single
task may end up being distributed over different deployed
sources. The end result is that any processing of deployed
information will necessarily involve an information
integration and/or translation task. Making WIP packages
portable requires that this integration be done in a general
manner and that queries to the information integrator be at
a semantic level, independent of precise sources used and
their organization.

We have chosen to use selected Al technologies, some
developed as part of DARPA’s Intelligent Integration of
Information (I3) program, to address this problem.

2 Application Description

This section describes WIP’s product specification phase
and product utilization phase. Both phases complement
each other, and the IDM, to provide an end-to-end
information push system.

2.1 Information Package Specification

Figure 1 presents the architecture of the product
specification phase. During this phase, the user interacts
with the Product Packager to define the information

54

package and the information profiles ultimately required for
its successful utilization. It consults the Information
Integrator in order to determine which sources are to be
monitored. Since the local, deployed sources are mirrors of
the original sources accessible through the IDM, (even if
their organization and DBMS may differ) the Information
Integrator can provide the Product Packager with necessary
information to locate the appropriate sources. Defined
profiles are handed to the Package Handler for local storage
and for IDM registration. They are also handed to the
Anticipator to infer user and world events that would
necessitate modification of the information package.

The following sections describe the operations and
capabilities of each of the modules in Figure 1 in more
detail.

2.1.1 Product Packager

The Product Packager: 1) allows the user to define high-
level information products, information packages, which
are parameterized by user information needs and specific
tasks and roles; 2) describes how the information should be
formatted when presented to the user; 3) provides a web-
based viewer that dynamically constructs packages for the
user on demand and performs value-added information
linking.

The Product Packager module, developed at 1SX, is
composed of two main components: the Package Editor
and the Product Viewer. The Package Editor provides an
environment for creating information package templates.
These templates include parameterized queries and display
formatting information. WIP’s query description
methodology allows users to easily describe their
information needs based on a descriptive domain ontology.
WIP’s parameterization allows the dynamic modification of
the precise semantics of queries without revising queries.
This is accomplished by providing late-time binding of
variables within the query expressions, enabling
information requirements such as: “Get the target
information for all targets on today’s target list” to be
expressed.

The Package Editor also performs the registration of
necessary data profiles so that data can be deployed to the
user’s system. The Product Viewer, discussed more
thoroughly in Section 2.2.1, collects the information
results from the information integrator module, formats
them based on the format defined in the package template,
and displays the packaged product to the user.

2.1.2 Information Integrator

The Information Integrator module is an application of
SIMS Al technology, developed at USC/ISI. SIMS serves
as a single access point for information distributed over a
collection of heterogeneous data sources. The underlying
technology is described in Section 3.2. During the
specification phase, the Information Integrator uses its
knowledge of the distribution of data over sources
accessible to the IDM (also mirrored, as noted earlier, by
the distribution of potential data over local deployed

> Anticipator

IDM

Profile Handler

/ 8’roﬁlcs

Profile
Registration

Product Packager

Information
Integrator

el “'(‘
Tl g rRRloye] o [TRpION
Source Source

Figure 2: Information Package Utilization

View
>

I

sources) to provide the Product Packager with the identity
of sources against which profiles must be registered. This
enables the package being defined to have the information
required for its operation at utilization time. Furthermore,
SIMS’ capability to determine which queries will have to
be asked of each component source to satisfy the package’s
needs is used by the Product Packager. The package
defines the profiles that will eventually be handed to the
Package Handler for processing and registration.

2.1.3 Profile Anticipator

The Profile Anticipator dynamically updates user
information needs in response to circumstances that have
changed since the original information profile was defined.
It handles conditional and unexpected information needs of
users, once their basic information needs are registered.
“Basic” information refers to required information to be
delivered at all times, while “conditional” information
refers to data to be delivered only when a certain condition
is met (e.g., only when the mission is completed, send me
the video image of the target). The Anticipator is an
integral part of the WIP system not only to achieve
dynamic intelligent information packaging but also to
simplify the complexity of package entry.

Upon notification of an information profile
registration, the Anticipator examines its contents and
generates an anticipator profile for that user. An
anticipator profile specifies the conditions under which the
user’s profile needs to be modified. For example, as a user
moves from one location to another, the Anticipator
monitors the user's current location to update information
needs that may change. The anticipator profile is registered
through the Product Packager just as the user’s information
profile is registered. The Anticipator then generates a
package monitor that continuously and periodically
requests the data for this package from the Product

55

Packager to check the occurrence of “significant” and
“interesting” events. When such events are detected, the
monitor notifies the Anticipator that then carries out
appropriate actions, i.e., the user’s information profile is
updated. When a user's information profile is deactivated,
the associated anticipator profile and its package monitor
are also deactivated.

The Anticipator maintains a rule base to provide
domain-specific knowledge necessary for generating the
anticipator profiles and to specify definitions of
“interesting” events and associated appropriate actions. The
Anticipator rules are represented in OEM (Object Exchange
Model [Goldman et al. 96}), and implemented in Java.

2.1.4 Package Handler

The Package Handler maintains a local store of profiles
defined specifically by WIP, handles communications, and
registers and de-registers these profiles with the IDM.

2.2 Information Package Utilization

In the package utilization phase, packages are run and their
information can be viewed and manipulated by the end-
user. The package typically needs specific information—it
requests data from the Information Integrator, which queries
the deployed sources. The Profile Anticipator will monitor
those same deployed sources via the Information Integrator
in order to update users’ information profiles, if and when
necessary.

Figure 2 presents the architecture for the information
package utilization phase. The following sections describe
the operations and capabilities of each of the modules in
more detail.

2.2.1 Product Packager

During the package specification phase, the Package Editor
was responsible for user interactions. However, during the
package utilization phase the Product Viewer is the focus
of the system’s operation. During the package
specification phase the Product Packager enhances a user’s
ability to analyze information by allowing the creation of
query expressions based on a high-level domain model, and
by defining the formats of results both on a query by query
basis and the package as a whole. In this phase, the
Product Packager manages the returned information in order
to provide the user with additional semantic insight to the
data.

Using the Product Viewer, the user requests that a
package be displayed. The Product Packager retrieves the
requested package from the Package Handler and submits
the package’s queries to the Information Integrator. Upon
receipt of the queried information, the Product Packager
aids the user by identifying semantic links among the
user’s requested information and that requested by others,
including information gathered on behalf of the
Anticipator. The Product Packager then formats the
information as specified in the package and renders the
package, dynamically, based on the user’s currently

available bandwidth and display options, using the Product
Viewer.

While formatting and rendering the package, the
Product Packager adds hyperlinks to the value-added linked
information.

2.2.2 Information Integrator

In this phase the Information Integrator performs' its
“standard” function of query answering. It receives queries
from the Product Packager and the Anticipator for data in
the local sources, and provides it. The queries are in a
high-level language using terms from the domain model
(see Section 3.2 for details), hiding from the other WIP
modules the details of source distribution, organization and
language. The same package will work in different
environments as long as the Information Integrator’s
description of the available sources is revised to reflect the
specifics of the local situation.

2.2.3 Profile Anticipator

Because the Anticipator can add and update a user's
information needs, information packages can contain new
information the user does not specify in his/her profile.
The operation of the Profile Anticipator is not modified
during the package utilization stage, and it performed its
monitoring of data sources regardless of user interactions
with the Product Viewer.

2.2.4 Package Handler
During the utilization phase, the Package Handler acts the
same as during the specification phase.

3 Use of AI Technology

3.1 Product Packager and Profile Editor

3.1.1 Information Package Template Selection

In military situations, such as the one WIP is designed for,
it is typical that many users have the same or a similar
data capacity. For this reason and for the efficiency of use,
having pre-staged information package templates (IPTs)
would be advantageous. However, because it is impossible
to predetermine the information needs of every user, a
better way is to establish IPTs that reflect the information
needs based on an encapsulation of a particular user role.
For instance, it would be far easier to determine the general
information needs of someone in the Bosnian theater and
store that as a specific IPT, store the information needs of
a tank commander in a separate IPT, etc. Then, when the
user needs to register an information package he needs only
describe himself by his roles (e.g. tank commander in the
Bosnian theater) and a specialized IPT can be constructed
based on the aggregation of smaller, specific information
package templates.

56

The ability to perform the aggregation of IPTs relies
on the definition of roles for both the users and the IPTs.
The purpose of a role is to provide a meaningful way of
recognizing an IPT by the type of information requests
contained within it. An IPT’s role does not necessarily
identify it uniquely, but it serves as a way to measure the
commonality between that IPT and others. The idea is to
define a role as some set of attributes common to all IPTs.
Once arole is established for an IPT it is used as the index
to find it again.

Collecting the appropriate IPTs for a user is not as
simple as performing a find in a relational database. The
determination of which IPTs are suitable can be based on a
data-driven, rule-based methodology. Within military
operations there are very specific rules about how
information can flow, typically this means up through the
chain of command. An example how this might work is
as follows: a tank company commander in the Bosnian
theater is interested in creating an appropriate IPT. An
appropriate set of IPT might be: one for tank commanders,
one for the Bosnian theater, one for the army. However,
an IPT for a battalion would not be appropriate. The
battalion commander in the same theater might get the
tank commander’s IPT plus IPTs for artillery companies.
But if no IPT exists for the battalion level for Bosnia, a
battalion level IPT for Europe might be appropriate. The
IPT selection process is defined within an expert system,
using a rule-based domain ontology.

3.1.2 Semantic Linking of Information

The Product Packager manages the information that is
returned from the information integrator for all users of the
WIP system at a given deployed site. As the Package
Products are requested and viewed via the Product Viewer, a
request is made to the Information Integrator to gather the
data. Using a rule-based domain ontology as a guide, the
Product Packager reviews all the data gathered from all
users and makes a determination whether the data is
relevant to the information requested in the original
package. For instance, if the package has been registered
to a tank unit and weather data has been collected and it is
raining, the Product Packager would determine that road
conditions would be a useful piece of information to
include. If road conditions for the appropriate geographical
area are available, then the Product Packager will add a
hyper-inked connection to the original package pointing to
the value added data.

3.2

The Information Integrator module is an application of
SIMS technology in the battlefield data dissemination
domain. The overall goal of the SIMS project at USC/ISI
is to provide integrated access to information distributed
over multiple, heterogeneous sources: databases,
knowledge bases, flat files, Web pages, programs, etc. In
providing such access, SIMS insulates human users and
application programs from the need to be aware of the
location of sources and distribution of queried data over

Information Integrator

them, individual source query languages, their
organization, data model, size, and so forth. The
processing of user requests should be robust, capable of
recovery from execution-time failures and able to handle
and/or report inconsistency and incompleteness of data
sources. At the same time SIMS has the goal of making
the process of incorporating new sources as simple and
automated as possible.

The SIMS approach to this integration problem has
been based largely on research in Artificial Intelligence,
primarily in the areas of knowledge representation,
planning, and machine learning. A model of the
application domain is created, using a knowledge
representation system to establish a fixed vocabulary for
describing objects in the domain, their attributes and
relationships among them. Using this vocabulary, a
description is created for each information source. Each
description indicates the data model used by the source, the
query language, network location, size estimates, etc., and
describes the contents of its fields in relation to the domain
model. SIMS’ descriptions of different information
sources are independent of each other, greatly easing the
process of extending the system. Some of the modeling is
aided by source analysis software developed as part of the
SIMS effort.

Queries to SIMS are written in a high-level language (a
subset of SQL or Loom) using the terminology of the
domain model — independent of the specifics of the
information sources. Queries need not contain information
indicating which sources are relevant to their execution or
where they are located. Queries do not need to state how
information present in different sources should be joined or
‘otherwise combined or manipulated.

SIMS uses a planner to determine how to identify and
combine the data necessary to process a query. In a pre-
processing stage, all data sources possibly relevant to the
query are identified. The planner then selects a set of
sources that contain the queried information and generates
an initial plan for the query. This plan is repeatedly refined
and optimized until it meets given performance criteria.
The plan itself includes, naturally, sub-queries to
appropriate information sources, specification of locations
for processing intermediate data, and parallel branches when
appropriate. The SIMS system then executes the plan.
The plan’s execution is monitored and replanning is
initiated if its performance meets with difficulties such as
unexpectedly unavailable sources. It is also possible for
the plan to include explicit replanning steps, after reaching
a state where more is known about the circumstances of
plan execution.

Changes to information sources are handled by
changing source descriptions only. The changes will
automatically be considered by the SIMS planner in
producing future plans that utilize information from the
modified sources. This greatly facilitates extensibility.

57

A variety of detailed publications describing SIMS is
available (e.g., [Arens et al 96], [Arens et al 93],
[Knoblock 95], [Knoblock 94]).

3.3 Profile Anticipator

The current prototype Anticipator module, developed at
LM/SC, implements data-driven, rule-based anticipation
of information needs: data sources are continuously
monitored for occurrences of interesting events. When
such events occur, one or more anticipation rules are fired
to update user’s information needs. Researchers in both
database (source subscription) and Al (knowledge
engineering and representation) have enabled the current
approach.

The anticipator uses domain-specific rules to determine
data sources to be monitored, conditions (interesting
events) to be checked, and actions to be executed when
conditions are met. The anticipator rules are obtained
through standard knowledge engineering techniques with
military experts. All rules are deterministic, i.e., there is
no probabilistic inference. The rules are described using
high-level domain terms and the translation of these terms
to source specific terms is performed by the Information
Integrator module. A key feature of anticipator rules is
their expressive event descriptions. Currently, a limited
set of event descriptions is possible including comparisons
of values of multiple attributes in two information
packages.

The rules are represented in OEM, taking advantage of
its flexibility (less structural constraints) and self-
declarative and self-describing features. It is worth noting
that anticipator rules contain neither data source nor
implementation specific information. For example, to
generate source monitors, rules specify sources and
possibly attribute names, but not database queries in some
query language (e.g., SQL).

The WIP anticipator module along with the Package
Handler is an extension of Profile and Event Manager
components of Intelligent Information Dissemination
Server (IIDS) [Dukes-Schlossberg et al.,, 97], and is an
implementation of an ongoing effort toward a fully
automated information profiling system. We are currently
designing an advanced information profiling system, which
uses both Bayesian networks and anticipation rules to
predict user’s information needs from their identity
information such as user type, location, status, and
mission. That is, rather than explicitly asking what
information is needed, users’ information needs are
predicted and their information profiles automatically
constructed from what and where they are, and what
mission they are engaged in.

4 Application Innovation

The design of the BADD system, as envisioned by
DARPA and executed under its guidance, does not involve

any technology that could be classified as part of Artificial
Intelligence. The participants in the effort described in this
paper found that the incorporation of additional technology
based on Al research and techniques could relatively easily
(e.g., using an order of magnitude smaller funding) provide
a very substantial added value. The information integration
functionality provided by the Information Integrator, which
uses Al planning technology, enables WIP to be
operational on different information sources in multiple
existences, including databases, legacy information
systems and the World Wide Web. The semantic
information linking function of Product Packager and
anticipating function provided by the Anticipator, both of
which use domain ontology and rule-based Al
technologies, significantly extend WIP’s usability to the
end users. Combined, these two functions not only
provide information that directly meets users’ needs, but
also supply and present context and other related
information that makes the required information
meaningful.

We would also like to point out that although WIP is
developed for the BADD system in a military domain, the
concept and WIP system itself can be easily applied to
other applications. Specifically, WIP can be adapted to a
personal digital assistant in an information rich
environment to help a user collect information based on
particular information needs. The information can then be
presented in a format compliant with the user’s preferences.

5 Evaluation

The WIP system is the integration of three distinct
technologies: information integration, product packaging
and information anticipation. The development of each of
these technologies has been pursued independently, and the
integration of components has taken place in the past
between some of the contributors. Prototype systems with
limited functionality exist for the components of the
Product Packager. The Information Integrator (SIMS),
responsible for satisfying information requests, is currently
supporting several projects in extended prototype form.
The Anticipator, which is responsible for anticipating
users’ information needs, is currently in development. The
development schedule currently places the integration of
WIP with the rest of the BADD system during the
Summer of 1998. BADD will then be deployed as a
working system in the Fall of 1998.

References

[Arens et al. 96] Yigal Arens, Craig A. Knoblock, and
Wei-Min Shen. Query Reformulation for Dynamic
Information Integration. Journal of Intelligent Information
Systems, Vol. 6, No. 2/3, 1996.

[Arens et al. 93] Yigal Arens, Chin Y. Chee, Chun-Nan
Hsu, and Craig A. Knoblock. Retrieving and Integrating

Data from Multiple Information Sources. International
Journal of Intelligent and Cooperative Information
Systems. Vol. 2, No. 2. Pp. 127-158, 1993.

[Dukes-Schlossberg et al. 97] Jon Dukes-Schlossberg,
Yongwon Lee, and Nancy Lehrer. IIDS: Intelligent
Information Dissemination Server. Proceedings of
MILCOM 1997.

[Goldman et al 96] Roy Goldman, Sudarshan Chawathe,
Auturo Crespo, Jason McHugh. A Standard Textual
Interchange Format for the Object Exchange Model
(OEM). Technical Report, Stanford University, 1996.
[Knoblock 95] Craig A. Knoblock. Planning, Executing,
Sensing, and Replanning for Information Gathering.
Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence, Montreal, Canada,
1995.

[Knoblock 94] Craig A. Knoblock. Applying a General-
Purpose Planner to the Problem of Query Access
Planning. Proceedings of the AAAI Fall Symposium on
Planning and Learning: On to Real Applications, 1994.

#U.S, GOVERNMENT PRINTING OFFICE: 2000-610-055-10034

58

DISTRIBUTION LI

addressas

DR. RAYMOND AL LTUIZZI
AFRLIIFTD

325 SRO0KS ROAD

RUMa, MY 13441-4535

USE THFUREATION SCIENLES INSTITUTE
4675 ADHMIRALTY "WAY
MARINA DEL RAY, CTA 90272-5695

ATTENTIOND OTIC-0CC

DEFENSE TLOHNITAL INFO CENTER

5725 JO0HAN J. KINGHAN ROAD, 8TE 0944
FTe ZELYOIR, VA 220036214

CFENSE ADYANCED RESEANCH
CJELTS ABENLY

31 HORTH FALRFAX DRIVE
Liﬂ”'d“ VA 22203=-1714

"J 1‘)

PR
37
AR

)JJ

ATTH: AN PFRIMNER

IZIT RESZARCH INSTITUTE
201 MILL 5T.

MOME, NY 13440

AFIT ACADZEYMIC LISRARY

AFITILDR, 2350 PL.5TREE

ARTA dir 3D 542

ARIGHT-PATTERSON AF3 OH 4543%3-7745

ALSMLME
2977 P STREET, $TE 4
WRISHT=PATTERSON AFg 0 45433-7739

(74}

-

number
of copies

10

Tt

AFRL/HESC=TDC
2098 § STRFET, dLD5 19C
WRIGHT=PATTERSON AFI OH 45433-7404

ATTN: SMDC I#® PL

U5 A2RmY SPACE & MISSILF DEF C#D
Pale 40X 15090

HUNTSVILLE AL %5837-3301

TECHNICAL LIRRARY DO274(PL-TS)
SPAWARSYSCEN

535610 HULL §T.

SAN DIEGD (A %2152-3701

COMMANDER, (0DE 4TLCOID
TECHNICAL LIZRARY, NAWID=WD
T ADAINISTRATION CIRCLE
CHINA LAKE €A 7?3555-61D0

COR, US ARMY AVIATION % MISSTLE {AD
REDSTOMz SCIENTISIC INFORMATION CT2
ATTN: AASAM=R0~003=2, (DOCUMINTS)
REDSTONE ARJENAL AL 3I3733-~5(0)

REPORT LIZRARY

M3 PI54

LOS ALAMDS NATIONAL LATQORATORY
LOS ALAMOS NM 375473

ATTN: D" 20RAH HART
AVIATION SRANCH SVC 122,10
FORIGA, R#M 931

BO0 TWDEPENDTNCDE AVE, 35w
WASHINGTON DC 29391

AFINCTHS
132 HALL 3LVD, STE 315
SAN ANTOMNIO TX 73243-70156

ATTN: KAROLA #, YJURISON
SOFTWARE UNMHINFERING IMSTITUTE
4500 FIFTH AVEMNUE

PITTSIURGH PA 152173

i

USAF/AIR FORCE RESZARLH LAROPATORY
AFAL/VSOTATLIARARY=3LD6 1103

5 WRIGHT DRIVE

HAMNSCOM AF2 Ma J1731-3D04

ATTNz LILEZIN LADUXE/DESD
BITRE CORPNRATION
202 RUYRLINGTON KD
REDEAED NMA J1T7T0

QUSDL{PIIDTIA/DUTD

ATTN: PATRICK 6. SJLLIVAN, JR.
430 ARMY NAVY DRIVE

SUTTYE 04

ARLIMGTON YA 22202

SOFTHARE SNER'S5 INST TECH LIRRARY
ATTH: DENNTIS SMITH

CAANFGE TLLON UNTVERSITY
PITTSBURGH PA 15213~3390

UsL~7s51

ATTH: DR ROZERT #, AALIER
4576 ADMIRALTY waAY

MARINA DFL REY (A F0292-%595

KESTREL INSTITUTE

ATTN: DR CORDELL GREEN
121 PAGE MILL RDAD
PALS ALTO CA 94304

ROCHESTER INSTITUTE OF TELHNOLOGY
ATTH: PRUF Jo Ae LASKY

1 LOMa MEXORTAL DRIVE

Palle 30K 9837

ROCHEZSTER NY 144613-53700

AFIT/IENG
ATTN:ITOM HARTRUM
WPAFD OH 45433-433%

THZ MITRE CORPORATION

ATTN: MR ZDWARD H. RENSLEY
AURLINGTON RD/MATL STOP A3SD
BEDFIRD MA Q017340

pL=3

R

ANDREW As CHIEN

SATC CHATIR Pﬂ}f (ST1 APL INT C0ORP)
UsCDIC3E=aP LM 4803

PETT aTL#AN DQTVEI 2:PT . U114
LAJALLA LA 722L93-0114

HONSYATLL, INC.

ATTH: MR RZT HARRIS
FEDLRAL RYSTEAS

70 AT5TPARK BRIVE
MCLEAN YA 22152

SOFTWARZ ENGINEIDIRIN: INSTITUT:
ATTH: 474 WILLIAM Z, HEFLEY
CAPNEGTo~MFLLON UNIVERSITY

TO6 JAK GROVE LT

AELFDRD 248 15070

UNTVERSITY OF SOUTHESN CALTIFIAMIA
ATTN: 0P. YIGSAL A°tN3
INFUPHATION SCTENLAS INSTITUTE
45670 ADMIRALTY WAY/SUITE 165361
MATINA DTL REY (A 73J293-5595

COLUMUITIA UNIV/DERPT (C0HMPUTLPR SLTENCE

ATTN: D2 SAIL E. ¥XAISER
450 £3%PUTSR STICNLE 3LDA
500 WisT 12074 STQJET

NEW YORK NY 127

AFIT/ENS

ATTN: 2% OFARY 3. LAMONT

SCHONL JF ENGINEFTRING

DEPT ZLECTRICAL % COMPUTFER =850
WPAFY OH 454335-4537%

N5BIOFC OF RESEAPCH

ATThz M5 MARY ANHT QVFRMAN

Yol SAVAGE ROAD

FT GI0%067T Ge MPADE 8D 24 =45379

TEXAS INSTRPUMENTS INCORPIRATOD
ATTN: 0% DAVID L. W#ELLS

Palla 32X 155474, 945 237

DALLAS TX 73257%

KESTREL DEVELOPHMENT COIPORATION
ATTN: 0 RICHARD JULLIG

3260 HILLVICW AVENUE

PALO ALTO €A 94304

DL-%

DARPAJITO

ATTH: DR KIRSTIT HELLYAN
701 N FAIPFAX DRIVE
ARPLINGTON VA 22203-1714

HASAZJOANGON SPACE C(THTER
ATTH: CHRIS CULY

MAIL L30T PT4

AOUSTON TX 77053

STEALING IMD INC.

H5C OPERATIONS

ATTHT MARY MAZINN

FEELRES TILANITAL CAMPUS/IRT 26 N.
ROME WY 15440

SCHLUMPERGER LAGDRATORY FOR
COMPRTER SCICHCE

ATTH: DR. SUILLZRMO APANGO

A311T HORTH FH020

AUSTIN, TX 7R723

DECISION SYSTEMS DEPARYMENT

ATTN: PROF WALT SCACCHI

SCHOOL OF AUSINESS

UNIVIRSITY OF SOUTHERN CALIFDRNIA
L5 ANGELES, LA 9J039-1421

HATIONAL INSTITUTEZ OF STANDARDS
AHD TELHNOLOBY

ATTH: CHRTS DALPIOWSKI

ROOM Al2n%k, 3LDG 225

SATTHSIURG #D 20899

3TEMS LABDRATORY

XPE 3Y

ETYTN: STEVEN He SCHWARTZ
NYNEY SCIENCE § TECHNOLOGY
300 WESTCHESTER AVENUE
WHITE PLAINS NY 20604

NAVAL TRAIMING SYSTEMS (ENTER
ATTH: ROJZERT BRTAUXKILODE 232
12753 RESZARCH PARKWAY
IRLANDD FL 32526-3224

Br JOHN SALASIN
DARPAIITH

3707 NORTH FAIZFAX DRIVE
APLINGTON VA 22203-1714

5 |

DL -5

dooTLYE 0RO

AT MTLLON ONTYTRTITY
HOOL 3F TOoMPUTEe 3CITNCE
TTHoUATA 24 152217=3591

MARY MAY YRV
: @20 TION

AT DV IVE
an: (8 271361

'

z
10 2FSACBOTYD RJIAD
121

W e DRV GUNMNIMNG

CEA TS0

T701 NCRTH FALPFAX DPIVE
ARLIHSTON VA 2220%3=1714

BF BV AR
=
y

DPR. ATTHAEL PITTARZLLI

CARPUTIR SCITHCE DTPART

SUNY [NST GF TELH AT JTICA/DME
Pals G2X 3057

UTICA, NY 13504-7351

DL=95

USC/ISI

ATTH: 803 MCGREGOR

46746 ADMIRALTY wAY
MARINA DEL REY, CA 90292

SRT INTERNATIONAL
ATTN: ENRIQUE RUSPINI
332 RAVENSWOOD AVE
MENLD PARK, CA 940325

DARTHMOUTH COLLFGE

ATTN: DANIELA RUS

DEPT OF COMPUTER SCIENCE
11 RDPE FERRY ROAD
HANODVER, NH 03755-%51Q

UNIVERSITY OF FLORIDA
ATTN: ERIC HANSOH

CISE DEPT 4546 CSF
GAINFSVILLE, FL 32511-5120

CARNEGTIE MELLON UNIVERSITY
ATTN: T09 MITCHELL :
COMPUTER SCIENCE DEPARTMENT
PITTZ3URGH, PA 15213-389D

UNIVERSITY OF ROCHFESTER

ATTN: JAMES ALLTH

DEPARTMENT OF COMPUTER SCIFENCE
ROCHESTER, NY 144627

MANIS-TEXTHISE LABS

ATTN: PARAIE ZHERIDAN

DEY CENTENNIAL PLAZA STH FLOOR
SYRAZUSE, NY 13502

WRIGHT STATZ UNIVERSITY
ATTHN: DR. 3BRUCE ATKRA
DEPART OF COMPUTER SCIENCE & ENGIN
DAYTON, DHIO 45435-0001

UNIVERSITY OF FLORIDA

ATTH: SHARMA CHAKRAVARTHY
COMPUTER & INFOR SCIENCE DEPART
SATNESVILLE, FL 32422-5125

pPL-7

R

KESTREL IANSTITUTE
ATTN: DAVID ESPINOSA
3260 HILLVIEW AVENUE
PALO ALTO, CA 94334

USC/INFORMATION SCIENCE INSTITUTE
ATTN: DR. CARL XESSELMAN

11474 ADMIRALTY WAY, SUlITeE 1001
MARINA DEL REY, CA 90292

MASSACHUSETTS INSTITUTE OF TECH
ATTN: DR, MICHAFLE SIFEGEL
SLOAN SCHOOL ‘

77 MASSACHUSETTS AVENUE
CAMBRIDGE, MA 02139

USC/INFORMATION SCTENCE INSTITUTE
ATTN: DRa. ATLLIAM SWARTHOUT
11474 ADMIRALTY WAV, 5UIT:c 1001
MARINA DZL REY, CA 90292

STANFORD UNIVERSITY

ATTN: DRs GTO WIEDERHOLD

857 SIERRA STREET

STANFORD

SANTA CLARA COUNTY, CA 94305-4125

SPAWARSYSCEN D&4209
ATTN: LEAH WONG

53245 PATTERSON ROAD

SAN DIEGC, CA 92152-7151

SPANARSYSCEN D4123
ATTN: LES AMDERSON
53560 HULL STREET

SAN DIEGO CA 92152-5001

GEORGE MASON UNIVERSITY
ATTN: SUSHIL JAJODIA
ISSE OEPT

FAIRFAX, VA 22030=4444

DIRNSA

ATTN: MICHAFL Ra. WARE

DOD, NSAJLSS (R23)

FTe GEDRBE Go MEADT MD 203755-0000

pL-3

DRa JIM RICHARDSON
3660 TECHNOLOGY DRIVE
MINNZAPOLIS, MN 55418

LOUISIANA STATE UNIVERSITY
COMPUTER SCIENCE DEPY
ATTN: DR. PETER CHEN

257 COATES HALL

BATON ROUGE, LA 70803

INSTITUTE OF TECH DEPT OF COMP SCI
ATTN: DR. JAIDEEP SRIVASTAVA
4-192 =EICS

230 UNION ST 3%

MINNEAPOLIS, ¥MN 53455

GTE/28H .
ATTN: HMAURICE M. MINEIL
F535 GRANITE RIDGE DRIVE
SUITE 245

SAN DIEGO, CA 92123

UNIVERSITY OF FLORIDA

ATThN: DR. SHARMA CHAKRAVARTHY
E47TO CSE BUILDING

GAINESVILLE, FL 32411-6125

AFRLIIFT
525 ZROOXS ROAD
ROME, NY 13441-4505

AFRL/IFTM
525 RROOKS RDAD ‘
ROME, NY 13441-4505

JEAN SLHOLTZ

DARPAJITO

3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

DRa ROGER CHEN

DEPT OF ELECT % COMPUTER ENGINR
SYRACUSE UNIVERSITY

SYRACUSE, NY 13244-1240

R

pL=9

MISSION
OF
AFRL/INFORMATION DIRECTORATE (IF)

The advancement and application of information systems science and
technology for aerospace command and control and its transition to air,
space, and ground systems to meet customer needs in the areas of Global
Awareness, Dynamic Planning and Execution, and Global Information
Exchange is the focus of this AFRL organization. The directorate’s areas
of investigation include a broad spectrum of information and fusion,
communication, collaborative environment and modeling and simulation,
defensive information warfare, and intelligent information systems

technologies.

